Electrochemical activation of MnS as an efficient conversion-type Cu2+ storage electrode

Nan Huang , Chenqi Yao , Juanjuan Cheng , Fawang Li , Yunzhuo Zhao , Yun Ou , Longfei Liu
{"title":"Electrochemical activation of MnS as an efficient conversion-type Cu2+ storage electrode","authors":"Nan Huang ,&nbsp;Chenqi Yao ,&nbsp;Juanjuan Cheng ,&nbsp;Fawang Li ,&nbsp;Yunzhuo Zhao ,&nbsp;Yun Ou ,&nbsp;Longfei Liu","doi":"10.1016/j.nxmate.2024.100422","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical activation can turn inactive materials into active materials in situ for energy storage facilely, controllably and efficiently, which makes metal sulfides feasible for Cu<sup>2+</sup> storage based on electrochemical activated into CuS. Among common heavy metal sulfides, MnS has the highest solubility product and high Cu<sup>2+</sup> adsorption and exchange rate in the copper removal by vulcanization in nickel electrolytic anodic solution. Here, MnS is electrochemical activated in situ in aqueous Cu-ion battery, and the effects of crystal structure and particle size on the electrochemical activation of MnS were revealed. The results show that both α, γ-MnS can be electrochemical activated, and activation cycling number is related to the particle size of MnS. When the MnS particle size is ball-milled small enough (1–2 μm), MnS will be completely transformed into CuS during the first discharge process, and then CuS↔Cu<sub>2</sub>S will participate in the reversible conversion reaction for copper storage. When the MnS particle size is larger (&gt; 10 μm), the α-MnS electrode capacity gradually increases and becomes stable after 30 cycles, and the capacity remains at 458.6 mAh g<sup>–1</sup> after 300 cycles.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"6 ","pages":"Article 100422"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical activation can turn inactive materials into active materials in situ for energy storage facilely, controllably and efficiently, which makes metal sulfides feasible for Cu2+ storage based on electrochemical activated into CuS. Among common heavy metal sulfides, MnS has the highest solubility product and high Cu2+ adsorption and exchange rate in the copper removal by vulcanization in nickel electrolytic anodic solution. Here, MnS is electrochemical activated in situ in aqueous Cu-ion battery, and the effects of crystal structure and particle size on the electrochemical activation of MnS were revealed. The results show that both α, γ-MnS can be electrochemical activated, and activation cycling number is related to the particle size of MnS. When the MnS particle size is ball-milled small enough (1–2 μm), MnS will be completely transformed into CuS during the first discharge process, and then CuS↔Cu2S will participate in the reversible conversion reaction for copper storage. When the MnS particle size is larger (> 10 μm), the α-MnS electrode capacity gradually increases and becomes stable after 30 cycles, and the capacity remains at 458.6 mAh g–1 after 300 cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电化学活化 MnS 作为高效转换型 Cu2+ 储存电极
电化学活化可以方便、可控、高效地将非活性材料就地转化为储能的活性材料,这使得基于电化学活化为 CuS 的金属硫化物用于 Cu2+ 储能成为可能。在常见的重金属硫化物中,MnS的溶度积最高,在镍电解阳极溶液中硫化除铜时具有较高的Cu2+吸附和交换率。本文对MnS在水性铜离子电池中进行了原位电化学活化,并揭示了晶体结构和粒度对MnS电化学活化的影响。结果表明,α、γ-MnS都能被电化学活化,且活化循环数与MnS的粒度有关。当 MnS 的粒径足够小(1-2 μm)时,MnS 会在第一次放电过程中完全转化为 CuS,然后 CuS↔Cu2S 会参与可逆转化反应以储存铜。当 MnS 粒径较大(10 μm)时,α-MnS 电极的容量会逐渐增加,并在 30 个循环后趋于稳定,300 个循环后容量仍保持在 458.6 mAh g-1 的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silica derived from rice husk waste as anode material for lithium-ion battery: A comprehensive study In situ self-growth of NiOOH/CrO₂ catalyst via constant current electrooxidation for urea oxidation reaction High field magnetization of Eu spin clusters, carrier spin polarization and Lattice diamagnetism in p-type Sn1−xEuxTe Diluted Magnetic Semiconductor Preparation and characterization of hybrid composites using jute fiber, carbon nanotubes, polypropylene Template-assisted synthesis of LaCoO3 from bio-silica: Catalytic insights into rice husk pyrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1