Micro-interface dynamics and macro-performance improvement in bitumen emulsion cold mixing for sustainable pavements: A critical review of moisture's impact
{"title":"Micro-interface dynamics and macro-performance improvement in bitumen emulsion cold mixing for sustainable pavements: A critical review of moisture's impact","authors":"Tiancheng Liu, Jiwang Jiang, Chunhan Gong","doi":"10.1016/j.susmat.2024.e01169","DOIUrl":null,"url":null,"abstract":"<div><div>Bitumen emulsion cold mixing (BE-CM) technology is characterized by its environmental friendliness, resource conservation, and ease of construction. It plays a significant leading role in addressing the sustainability challenges in the highway transportation sector and has become a research hotspot in recent years. However, due to the presence of emulsifiers and moisture, the ionic environment of the solution components is complex. Currently, the moisture migration patterns within BE-CM mixtures and its effects on the micro-interface and macro-performance of BE-CM mixtures remain insufficiently understood. This has limited the widespread application of BE-CM technology. To further promote the development of BE-CM technology, this paper, based on bibliometric analysis, reviews and discusses the following three aspects: multi-scale characterization and modeling of moisture effects, adsorption and adhesion behavior at the bitumen emulsion-aggregate interface, and macroscopic performance enhancement of BE-CM mixtures. Additionally, several recommendations are provided to guide future research.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01169"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221499372400349X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Bitumen emulsion cold mixing (BE-CM) technology is characterized by its environmental friendliness, resource conservation, and ease of construction. It plays a significant leading role in addressing the sustainability challenges in the highway transportation sector and has become a research hotspot in recent years. However, due to the presence of emulsifiers and moisture, the ionic environment of the solution components is complex. Currently, the moisture migration patterns within BE-CM mixtures and its effects on the micro-interface and macro-performance of BE-CM mixtures remain insufficiently understood. This has limited the widespread application of BE-CM technology. To further promote the development of BE-CM technology, this paper, based on bibliometric analysis, reviews and discusses the following three aspects: multi-scale characterization and modeling of moisture effects, adsorption and adhesion behavior at the bitumen emulsion-aggregate interface, and macroscopic performance enhancement of BE-CM mixtures. Additionally, several recommendations are provided to guide future research.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.