MOF derived NiS/ZnS heterostructure enhancing the electrochemical kinetics for sodium ion batteries

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-11 DOI:10.1016/j.jpowsour.2024.235803
Jiajia Wang , Jiaxin Fan , Meiyu Fan , Xiyan Yue , Juan Zhang , Zhao Liu , Zhengkun Xie , Qiang Zhao , Abuliti Abudula , Guoqing Guan
{"title":"MOF derived NiS/ZnS heterostructure enhancing the electrochemical kinetics for sodium ion batteries","authors":"Jiajia Wang ,&nbsp;Jiaxin Fan ,&nbsp;Meiyu Fan ,&nbsp;Xiyan Yue ,&nbsp;Juan Zhang ,&nbsp;Zhao Liu ,&nbsp;Zhengkun Xie ,&nbsp;Qiang Zhao ,&nbsp;Abuliti Abudula ,&nbsp;Guoqing Guan","doi":"10.1016/j.jpowsour.2024.235803","DOIUrl":null,"url":null,"abstract":"<div><div>Metal sulfides has attracted numerous attentions as the anode material for sodium ion batteries (SIBs) because of their excellent theoretical capacities. However, these materials still suffer from poor electrochemical performance caused by the volume expansion and sluggish electrochemical kinetics. In this work, the NiS/ZnS embedded in carbon material with heterogeneous interface is fabricated through a sulphurization process using metal organic framework (MOF) as precursor followed by acid treatment (NiS/ZnS@C-AT). It is found that the generated abundant heterogeneous interface in the present materials effectively promotes the electronic conductivity and Na<sup>+</sup> diffusion, which enhances the electrochemical kinetics, causing good rate performance. Moreover, the carbon material produced by the sulphurization process with high temperature can increase the structural stability of the NiS/ZnS material during charging/discharging process, resulting in long cycling stability. As a result, the NiS/ZnS@C-AT based anode for SIBs exhibits an excellent reversible capacity of 456.8 mA h g<sup>−1</sup>@ 0. 1 A g<sup>−1</sup>, good cycling stability with 404.5 mA h g<sup>−1</sup>@2 A g<sup>−1</sup> after 1900 cycles, and superior rate performance with 381.3 mA h g<sup>−1</sup>@5 A g<sup>−1</sup>.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"626 ","pages":"Article 235803"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017555","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal sulfides has attracted numerous attentions as the anode material for sodium ion batteries (SIBs) because of their excellent theoretical capacities. However, these materials still suffer from poor electrochemical performance caused by the volume expansion and sluggish electrochemical kinetics. In this work, the NiS/ZnS embedded in carbon material with heterogeneous interface is fabricated through a sulphurization process using metal organic framework (MOF) as precursor followed by acid treatment (NiS/ZnS@C-AT). It is found that the generated abundant heterogeneous interface in the present materials effectively promotes the electronic conductivity and Na+ diffusion, which enhances the electrochemical kinetics, causing good rate performance. Moreover, the carbon material produced by the sulphurization process with high temperature can increase the structural stability of the NiS/ZnS material during charging/discharging process, resulting in long cycling stability. As a result, the NiS/ZnS@C-AT based anode for SIBs exhibits an excellent reversible capacity of 456.8 mA h g−1@ 0. 1 A g−1, good cycling stability with 404.5 mA h g−1@2 A g−1 after 1900 cycles, and superior rate performance with 381.3 mA h g−1@5 A g−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOF 衍生的 NiS/ZnS 异质结构可提高钠离子电池的电化学动力学性能
金属硫化物因其出色的理论容量而成为钠离子电池(SIB)的负极材料,受到了广泛关注。然而,由于体积膨胀和电化学动力学缓慢,这些材料的电化学性能仍然较差。本研究以金属有机框架(MOF)为前驱体,通过硫化工艺和酸处理(NiS/ZnS@C-AT)制备了具有异质界面的嵌在碳材料中的 NiS/ZnS。研究发现,本材料中生成的丰富异质界面有效促进了电子导电性和 Na+ 扩散,从而增强了电化学动力学,使其具有良好的速率性能。此外,高温硫化过程中产生的碳材料可以提高 NiS/ZnS 材料在充放电过程中的结构稳定性,从而实现长循环稳定性。因此,基于 NiS/ZnS@C-AT 的 SIB 负极具有出色的可逆容量(456.8 mA h g-1@0. 1 A g-1)、良好的循环稳定性(1900 次循环后 404.5 mA h g-1@2 A g-1)和卓越的速率性能(381.3 mA h g-1@5 A g-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
In-situ generated sulfur/porous carbon nanocomposites featuring enhanced specific surface area for aqueous zinc-sulfur batteries with small electrochemical polarization Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes Polyimide dielectrics sandwiched by large-bandgap Al2O3 for high-temperature energy storage Enhancing sodium ion transport in batteries through a crosslinked ceramic network-coated polyethylene (PE) separator Multi-objective optimized energy management strategy using an artificial tree algorithm for extended range hybrid loaders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1