Shear localization and shear banding: A review about the complex interplay between material, microstructural and process variables

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-10-29 DOI:10.1016/j.matchar.2024.114501
Ashoktaru Chakraborty, Shibayan Roy
{"title":"Shear localization and shear banding: A review about the complex interplay between material, microstructural and process variables","authors":"Ashoktaru Chakraborty,&nbsp;Shibayan Roy","doi":"10.1016/j.matchar.2024.114501","DOIUrl":null,"url":null,"abstract":"<div><div>Shear localization and shear band formation in metals, alloys and composites is an important deformation phenomenon most commonly associated with high strain rate deformation. It generally occurs as a thermo-mechanical instability where thermal softening due to adiabatic heating subdues strain hardening. The review presents different facets of strain localization and eventual shear band formation in various materials primarily including pure metals, alloys and composites. It starts with the dependence of shear band formation on materials parameters (e.g. crystal structure, stacking fault energy, c/a ratio, <strong>twining and TRIP effect</strong> etc.) and process variables (strain rate, stress states etc.) are presented. Effect of microstructural heterogeneities like twinning, grain boundary, phase boundary, particulates etc. are then discussed along with orientation variables (micro- and bulk texture etc.). Various aspects of microstructure and texture evolution due to strain localization in and around the shear bands are further demonstrated e.g. heat accumulation leading to dynamic recrystallization, phase transformation amorphization, evolution of Brass type texture due to shear banding etc. Theoretical simulations and modeling efforts pertaining to shear band formation, mostly crystal plasticity finite element based and resulting texture evolution is presented. Finally, an extensive review is carried out about the shear location and shear band formation for various metallic nanolayered composites. The present review therefore should be useful in understanding the root causes of shear localization and shear band formation e.g. during fabricating components for fracture-critical applications.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114501"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008829","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Shear localization and shear band formation in metals, alloys and composites is an important deformation phenomenon most commonly associated with high strain rate deformation. It generally occurs as a thermo-mechanical instability where thermal softening due to adiabatic heating subdues strain hardening. The review presents different facets of strain localization and eventual shear band formation in various materials primarily including pure metals, alloys and composites. It starts with the dependence of shear band formation on materials parameters (e.g. crystal structure, stacking fault energy, c/a ratio, twining and TRIP effect etc.) and process variables (strain rate, stress states etc.) are presented. Effect of microstructural heterogeneities like twinning, grain boundary, phase boundary, particulates etc. are then discussed along with orientation variables (micro- and bulk texture etc.). Various aspects of microstructure and texture evolution due to strain localization in and around the shear bands are further demonstrated e.g. heat accumulation leading to dynamic recrystallization, phase transformation amorphization, evolution of Brass type texture due to shear banding etc. Theoretical simulations and modeling efforts pertaining to shear band formation, mostly crystal plasticity finite element based and resulting texture evolution is presented. Finally, an extensive review is carried out about the shear location and shear band formation for various metallic nanolayered composites. The present review therefore should be useful in understanding the root causes of shear localization and shear band formation e.g. during fabricating components for fracture-critical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
剪切定位和剪切带:材料、微结构和工艺变量之间复杂的相互作用综述
金属、合金和复合材料中的剪切定位和剪切带形成是一种重要的变形现象,通常与高应变速率变形有关。它通常是一种热机械不稳定现象,即绝热加热导致的热软化抑制了应变硬化。综述介绍了各种材料(主要包括纯金属、合金和复合材料)中应变局部化和最终剪切带形成的不同方面。文章首先介绍了剪切带形成对材料参数(如晶体结构、堆积断层能、c/a 比、缠绕和 TRIP 效应等)和工艺变量(应变速率、应力状态等)的依赖性。然后讨论了孪晶、晶界、相界、微粒等微结构异质性的影响以及取向变量(微观和整体纹理等)。此外,还进一步论证了剪切带内部和周围应变局部化导致的微观结构和纹理演变的各个方面,例如导致动态再结晶的热积累、相变变质、剪切带导致的黄铜型纹理演变等。此外,还介绍了与剪切带形成有关的理论模拟和建模工作,主要是基于晶体塑性的有限元模拟和由此产生的纹理演变。最后,还对各种金属纳米层复合材料的剪切位置和剪切带形成进行了广泛综述。因此,本综述有助于了解剪切定位和剪切带形成的根本原因,例如在制造用于断裂关键应用的部件时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Evolution of microstructures in laser additive manufactured HT-9 ferritic martensitic steel Enhanced mechanical properties of lightweight refractory high-entropy alloys at elevated temperatures via Si addition Effects of ZrC addition on the recrystallization behavior of ZrC-dispersion strengthened FeCrAl alloys Comprehensive analysis of beryllium content influence on secondary electron yield in CuBe alloys Direct observation of the evolution behavior of micro to nanoscale precipitates in austenitic heat-resistant steel via electron channeling contrast imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1