N. Atanov , V. Baranov , E. Benedetti , C. Bloise , L. Borrel , S. Ceravolo , F. Cervelli , F. Colao , M. Cordelli , G. Corradi , Yu.I. Davydov , S. Di Falco , E. Diociaiuti , S. Donati , B. Echenard , P. Fedeli , C. Ferrari , A. Gioiosa , S. Giovannella , V. Giusti , R.Y. Zhu
{"title":"Design and assembly status overview of the Mu2e electromagnetic calorimeter mechanical structures","authors":"N. Atanov , V. Baranov , E. Benedetti , C. Bloise , L. Borrel , S. Ceravolo , F. Cervelli , F. Colao , M. Cordelli , G. Corradi , Yu.I. Davydov , S. Di Falco , E. Diociaiuti , S. Donati , B. Echenard , P. Fedeli , C. Ferrari , A. Gioiosa , S. Giovannella , V. Giusti , R.Y. Zhu","doi":"10.1016/j.nima.2024.170040","DOIUrl":null,"url":null,"abstract":"<div><div>The “muon-to-electron conversion” (Mu2e) experiment at Fermilab will search for the Charged Lepton Flavour Violating neutrino-less coherent conversion of a muon into an electron in the field of an aluminum nucleus. The observation of this process would be the unambiguous evidence of physics beyond the Standard Model. The detector has been designed as a state-of-the-art crystal calorimeter and employs 1348 pure Cesium Iodide (CsI) crystals readout by UV-extended silicon photosensors and fast front-end and digitization electronics. A design consisting of two identical annular matrices (named “disks”) positioned at the relative distance of 70 cm, downstream the aluminum target along the muon beamline, satisfies the Mu2e physics requirements. The hostile Mu2e operational conditions, in terms of radiation levels (total ionizing dose of 90 krad and a neutron fluence of <span><math><mrow><mn>5</mn><mi>x</mi><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>12</mn></mrow></msup><mi>n</mi><mo>/</mo><mi>c</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>@</mi><mn>1</mn><mi>M</mi><mi>e</mi><mi>V</mi><mi>e</mi><mi>q</mi><mrow><mo>(</mo><mi>S</mi><mi>i</mi><mo>)</mo></mrow><mo>/</mo><mi>y</mi></mrow></math></span>), magnetic field intensity (1 T) and vacuum level (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> Torr) have posed tight constraints on the design of the detector mechanical structures and materials choice. The support structure of the two 674 crystal matrices employs two aluminum hollow rings and parts made of open-cell vacuum-compatible carbon fiber. The photosensors and service front-end electronics for each crystal are assembled in a unique mechanical unit inserted in a machined copper holder. The 674 units are supported by a machined plate made of vacuum-compatible plastic material. The plate also integrates the cooling system made of a network of copper lines flowing a low temperature radiation-hard fluid and placed in thermal contact with the copper holders. The data acquisition electronics is hosted in aluminum custom crates positioned on the external lateral surface of the two disks. The crates also integrate the electronics cooling system.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1070 ","pages":"Article 170040"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224009665","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The “muon-to-electron conversion” (Mu2e) experiment at Fermilab will search for the Charged Lepton Flavour Violating neutrino-less coherent conversion of a muon into an electron in the field of an aluminum nucleus. The observation of this process would be the unambiguous evidence of physics beyond the Standard Model. The detector has been designed as a state-of-the-art crystal calorimeter and employs 1348 pure Cesium Iodide (CsI) crystals readout by UV-extended silicon photosensors and fast front-end and digitization electronics. A design consisting of two identical annular matrices (named “disks”) positioned at the relative distance of 70 cm, downstream the aluminum target along the muon beamline, satisfies the Mu2e physics requirements. The hostile Mu2e operational conditions, in terms of radiation levels (total ionizing dose of 90 krad and a neutron fluence of ), magnetic field intensity (1 T) and vacuum level ( Torr) have posed tight constraints on the design of the detector mechanical structures and materials choice. The support structure of the two 674 crystal matrices employs two aluminum hollow rings and parts made of open-cell vacuum-compatible carbon fiber. The photosensors and service front-end electronics for each crystal are assembled in a unique mechanical unit inserted in a machined copper holder. The 674 units are supported by a machined plate made of vacuum-compatible plastic material. The plate also integrates the cooling system made of a network of copper lines flowing a low temperature radiation-hard fluid and placed in thermal contact with the copper holders. The data acquisition electronics is hosted in aluminum custom crates positioned on the external lateral surface of the two disks. The crates also integrate the electronics cooling system.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.