Adipose tissue targeted sequential delivery system regulating glycolipid metabolism for systemic obesity and its comorbidities

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2024-11-14 DOI:10.1016/j.nantod.2024.102553
Yingxian Chen , Xinmiao Lan , Junhua Han , Xin Xiang , Qingmeng Li , Xiaolong Xu , Tingting Wang , Siying Huang , Jianzhong Shen , Xiaowei Ma
{"title":"Adipose tissue targeted sequential delivery system regulating glycolipid metabolism for systemic obesity and its comorbidities","authors":"Yingxian Chen ,&nbsp;Xinmiao Lan ,&nbsp;Junhua Han ,&nbsp;Xin Xiang ,&nbsp;Qingmeng Li ,&nbsp;Xiaolong Xu ,&nbsp;Tingting Wang ,&nbsp;Siying Huang ,&nbsp;Jianzhong Shen ,&nbsp;Xiaowei Ma","doi":"10.1016/j.nantod.2024.102553","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity has emerged as a chronic, relapsing, progressive disease globally. Available methods including pharmacotherapy, surgery, and limotherapy, may lead to toxicities and gastrointestinal disturbances due to their lack of adipose tissue targetability. Increasing energy expenditure and reducing gluconeogenesis through browning of white adipose tissue (WAT) is a therapeutic target for obesity and its comorbidities. Here, we constructed a biomimetic discoidal recombinant high-density lipoprotein (rHDL) with high specificity for scavenger receptor class B type I (SR-BI). rHDL enables targeted delivery of combination drugs (RM) containing rosiglitazone (Rosi) and metformin (Met) to WAT, liver, and intestine, that express elevated levels of SR-BI, resulting in promoted browning of WAT, enhanced mitochondrial biogenesis, and adipocyte thermogenesis increase. For oral delivery, rHDL@RM was loaded in pH-senstive sodium alginate chitosan complex microspheres (MS), enabling stepwise release in the gastrointestinal tract, with mucosal penetration capability that facilitating longlasting lipid-lowering effect. Diet-induced obese (DIO) mice treated with rHDL@RM/MS showed 44.6 % reduction in body weight, with decreased serum glucose and lipid levels. Obesity comorbidities, including NAFLD, gut microbiome disorders, systemic lipid metabolism abnormalities, and chronic inflammation, were all effectively suppressed. Our designed rHDL@RM/MS oral-nanoplatform represents a valuable therapeutic strategy for painless treatment of systemic obesity and related comorbidities.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":null,"pages":null},"PeriodicalIF":13.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224004092","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity has emerged as a chronic, relapsing, progressive disease globally. Available methods including pharmacotherapy, surgery, and limotherapy, may lead to toxicities and gastrointestinal disturbances due to their lack of adipose tissue targetability. Increasing energy expenditure and reducing gluconeogenesis through browning of white adipose tissue (WAT) is a therapeutic target for obesity and its comorbidities. Here, we constructed a biomimetic discoidal recombinant high-density lipoprotein (rHDL) with high specificity for scavenger receptor class B type I (SR-BI). rHDL enables targeted delivery of combination drugs (RM) containing rosiglitazone (Rosi) and metformin (Met) to WAT, liver, and intestine, that express elevated levels of SR-BI, resulting in promoted browning of WAT, enhanced mitochondrial biogenesis, and adipocyte thermogenesis increase. For oral delivery, rHDL@RM was loaded in pH-senstive sodium alginate chitosan complex microspheres (MS), enabling stepwise release in the gastrointestinal tract, with mucosal penetration capability that facilitating longlasting lipid-lowering effect. Diet-induced obese (DIO) mice treated with rHDL@RM/MS showed 44.6 % reduction in body weight, with decreased serum glucose and lipid levels. Obesity comorbidities, including NAFLD, gut microbiome disorders, systemic lipid metabolism abnormalities, and chronic inflammation, were all effectively suppressed. Our designed rHDL@RM/MS oral-nanoplatform represents a valuable therapeutic strategy for painless treatment of systemic obesity and related comorbidities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节糖脂代谢的脂肪组织定向序贯给药系统,用于治疗全身性肥胖症及其合并症
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Natural-based UV-shielding additives to protect photosensitive pesticides: Production of nanoparticles from the co-self-assembly of lignin and tannin In situ atomic observation of transformation twinning in nanocrystals Energy-based surgery generated carbonized particles promote the development of ovarian cancer Adipose tissue targeted sequential delivery system regulating glycolipid metabolism for systemic obesity and its comorbidities CD33 targeted EzH1 regulated nanotherapy epigenetically inhibits fusion oncoprotein (AML1-ETO) rearranged acute myeloid leukemia in both in vitro and in vivo Patient Derived Xenograft models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1