Ninie Diana Baharuddin , Norulhuda Mohamed Ramli , Nurarina Ayuni Ghazali , Hui Teng Tan , Yam Sim Khaw , I. Natrah
{"title":"Evaluation of optimal culture conditions for marine benthic diatom Halamphora coffeaeformis growth and its biochemical properties","authors":"Ninie Diana Baharuddin , Norulhuda Mohamed Ramli , Nurarina Ayuni Ghazali , Hui Teng Tan , Yam Sim Khaw , I. Natrah","doi":"10.1016/j.algal.2024.103720","DOIUrl":null,"url":null,"abstract":"<div><div><em>Halamphora coffeaeformis</em> is a benthic diatom that exhibits a high-value biochemical composition and can be harnessed for various applications particularly in aquaculture. Despite its potential, significant challenges persist in the optimization of cultivation parameters and scaling up to mass cultivation level. Thus, this study aimed to identify the most suitable substrate, as well as the optimal light intensity, photoperiod, salinity, and pH for the growth of <em>H. coffeaeformis.</em> The biochemical composition of mass-cultured <em>H. coffeaeformis</em> was also analyzed. The findings revealed that polyvinyl chloride (PVC) substrates substantially outperformed bamboo by yielding significantly higher (<em>p</em> < 0.05) growth performance. The maximum specific growth rate (SGR) of <em>H. coffeaeformis</em> was recorded under the following conditions: the light intensity of 120 μmol m<sup>−2</sup> s<sup>−1</sup> with an 18: 6 h light/dark cycle (0.200 day<sup>−1</sup>), the salinity of 30 ppt (0.161 day<sup>−1</sup>) and the pH of 9 (0.409 day<sup>−1</sup>). Under these optimized conditions, the mass culture of <em>H. coffeaeformis</em> at 100 L exhibited the highest ash content (38.47 ± 0.17 % dry weight (DW)), followed by crude protein (26.26 ± 0.56 % DW) containing high-quality amino acids, carbohydrates (20.96 ± 0.81 % DW) and crude lipids (4.46 ± 0.56 % DW). The lipid profile was particularly notable for its high saturated fatty acid (SFA) content and sufficient levels of polyunsaturated fatty acids (PUFA), while maintaining the lowest fiber content (0.07 ± 0.01 % DW). These findings underscore the potential of <em>H. coffeaeformis</em> for large-scale aquaculture applications and highlight the importance of fine-tuning cultivation parameters to maximize its biochemical yields.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103720"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424003321","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Halamphora coffeaeformis is a benthic diatom that exhibits a high-value biochemical composition and can be harnessed for various applications particularly in aquaculture. Despite its potential, significant challenges persist in the optimization of cultivation parameters and scaling up to mass cultivation level. Thus, this study aimed to identify the most suitable substrate, as well as the optimal light intensity, photoperiod, salinity, and pH for the growth of H. coffeaeformis. The biochemical composition of mass-cultured H. coffeaeformis was also analyzed. The findings revealed that polyvinyl chloride (PVC) substrates substantially outperformed bamboo by yielding significantly higher (p < 0.05) growth performance. The maximum specific growth rate (SGR) of H. coffeaeformis was recorded under the following conditions: the light intensity of 120 μmol m−2 s−1 with an 18: 6 h light/dark cycle (0.200 day−1), the salinity of 30 ppt (0.161 day−1) and the pH of 9 (0.409 day−1). Under these optimized conditions, the mass culture of H. coffeaeformis at 100 L exhibited the highest ash content (38.47 ± 0.17 % dry weight (DW)), followed by crude protein (26.26 ± 0.56 % DW) containing high-quality amino acids, carbohydrates (20.96 ± 0.81 % DW) and crude lipids (4.46 ± 0.56 % DW). The lipid profile was particularly notable for its high saturated fatty acid (SFA) content and sufficient levels of polyunsaturated fatty acids (PUFA), while maintaining the lowest fiber content (0.07 ± 0.01 % DW). These findings underscore the potential of H. coffeaeformis for large-scale aquaculture applications and highlight the importance of fine-tuning cultivation parameters to maximize its biochemical yields.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment