Ternary transition-metal nitride halide monolayers MNI (M = Zr, Hf) with low thermal conductivity and high thermoelectric figure of merit

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-11-16 DOI:10.1016/j.commatsci.2024.113508
Radhakrishnan Anbarasan , Duckjong Kim , Jae Hyun Park
{"title":"Ternary transition-metal nitride halide monolayers MNI (M = Zr, Hf) with low thermal conductivity and high thermoelectric figure of merit","authors":"Radhakrishnan Anbarasan ,&nbsp;Duckjong Kim ,&nbsp;Jae Hyun Park","doi":"10.1016/j.commatsci.2024.113508","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning-based approaches are promising in pursuing the thermal properties of two-dimensional materials. Here, a comprehensive study of thermal transport and thermoelectric properties of the <span><math><mi>β</mi></math></span>-form of ZrNI and HfNI monolayers, a family of ternary transition-metal nitride halides (TMNH), is presented by employing machine learning-based interatomic potential, Boltzmann transport theory, and first-principles calculations. The monolayer isolation and its stability are confirmed via cleavage energies, phonon dispersions, and ab initio molecular dynamics simulations. At room temperature, the lattice thermal conductivity of the ZrNI and HfNI monolayers are 7.8 W/(m<span><math><mi>⋅</mi></math></span>K) and 11.7 W/(m<span><math><mi>⋅</mi></math></span>K), respectively, which are considerably lower than those of typical 2D materials. The power factor of n-type doped ZrNI layer is 9 times higher than the HfNI monolayer due to high electrical conductivity of ZrNI. Also, the maximum figure of merit values of the n-type ZrNI always appears higher than the HfNI monolayer regardless of temperature. However, both the ZrNI and HfNI layers show superior thermoelectric properties over typical 2D materials. It reveals that the n-type ZrNI monolayer is a beneficial material for thermoelectric applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113508"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007298","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning-based approaches are promising in pursuing the thermal properties of two-dimensional materials. Here, a comprehensive study of thermal transport and thermoelectric properties of the β-form of ZrNI and HfNI monolayers, a family of ternary transition-metal nitride halides (TMNH), is presented by employing machine learning-based interatomic potential, Boltzmann transport theory, and first-principles calculations. The monolayer isolation and its stability are confirmed via cleavage energies, phonon dispersions, and ab initio molecular dynamics simulations. At room temperature, the lattice thermal conductivity of the ZrNI and HfNI monolayers are 7.8 W/(mK) and 11.7 W/(mK), respectively, which are considerably lower than those of typical 2D materials. The power factor of n-type doped ZrNI layer is 9 times higher than the HfNI monolayer due to high electrical conductivity of ZrNI. Also, the maximum figure of merit values of the n-type ZrNI always appears higher than the HfNI monolayer regardless of temperature. However, both the ZrNI and HfNI layers show superior thermoelectric properties over typical 2D materials. It reveals that the n-type ZrNI monolayer is a beneficial material for thermoelectric applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有低热导率和高热电性能的三元过渡金属氮化物卤化物单层 MNI(M = Zr、Hf
基于机器学习的方法在研究二维材料的热特性方面大有可为。本文通过采用基于机器学习的原子间势能、玻尔兹曼输运理论和第一性原理计算,全面研究了三元过渡金属氮化物卤化物(TMNH)家族中 ZrNI 和 HfNI 单层的 β 形式热输运和热电特性。通过裂解能、声子色散和 ab initio 分子动力学模拟,证实了单层隔离及其稳定性。室温下,ZrNI 和 HfNI 单层的晶格热导率分别为 7.8 W/(m⋅K) 和 11.7 W/(m⋅K),大大低于典型的二维材料。由于 ZrNI 的高导电性,n 型掺杂 ZrNI 层的功率因数比 HfNI 单层高 9 倍。此外,无论温度如何,n 型 ZrNI 的最大功勋值始终高于 HfNI 单层。然而,与典型的二维材料相比,氮化锆和氮化铪层都显示出更优越的热电特性。这表明 n 型 ZrNI 单层是一种有利于热电应用的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Atomic structure modelling and its electronic states analysis of aluminium-related bismuth active centre (BAC-Al) in bismuth-doped optical fibre Effect of change in number of electrons to optical properties and surface plasmon resonance of noble metals Ternary transition-metal nitride halide monolayers MNI (M = Zr, Hf) with low thermal conductivity and high thermoelectric figure of merit Engineering the optoelectronic properties of ZnS (1100) surface using selected 3d transition metal dopants for enhanced Photoelectrochemical water Splitting: A DFT study Phase field numerical model for simulating the diffusion controlled stress corrosion cracking phenomena in anisotropic material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1