Weirun Zhu , Baonan Jia , Shihao Sun , Pengfei Lu , Binbin Yan , Gang-Ding Peng
{"title":"Atomic structure modelling and its electronic states analysis of aluminium-related bismuth active centre (BAC-Al) in bismuth-doped optical fibre","authors":"Weirun Zhu , Baonan Jia , Shihao Sun , Pengfei Lu , Binbin Yan , Gang-Ding Peng","doi":"10.1016/j.commatsci.2024.113520","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth-doped optical fibre (BDF) is a significant potential optical material for optical communication owing to its broad gain spectrum attributed to several bismuth active centres (BACs). In this work, we propose and study a simple model of aluminium-related bismuth active centre (BAC-Al) considering both Al and Bi in a member ring, using first principle methods. We analyse an Al-substituted member-ring with different Bi cases: substituted Bi<sup>1+</sup>, Bi<sup>2+</sup> and Bi<sup>3+</sup> as well as interstitial Bi<sup>0</sup>, BiO, BiOH, and Bi<sub>2</sub>O, and found that the interstitial Bi<sup>0</sup> model produces the energy level diagram similar to that of BAC-Al. In addition, we studied the interstitial Bi<sup>0</sup> in Al-substituted member-rings with different sizes and shapes. Based on our results, we confirmed that the interstitial Bi<sup>0</sup> in an Al-substituted six-member-ring produces the best agreement in terms of BAC-Al energy level diagram.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113520"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007419","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bismuth-doped optical fibre (BDF) is a significant potential optical material for optical communication owing to its broad gain spectrum attributed to several bismuth active centres (BACs). In this work, we propose and study a simple model of aluminium-related bismuth active centre (BAC-Al) considering both Al and Bi in a member ring, using first principle methods. We analyse an Al-substituted member-ring with different Bi cases: substituted Bi1+, Bi2+ and Bi3+ as well as interstitial Bi0, BiO, BiOH, and Bi2O, and found that the interstitial Bi0 model produces the energy level diagram similar to that of BAC-Al. In addition, we studied the interstitial Bi0 in Al-substituted member-rings with different sizes and shapes. Based on our results, we confirmed that the interstitial Bi0 in an Al-substituted six-member-ring produces the best agreement in terms of BAC-Al energy level diagram.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.