{"title":"V2X application server and vehicle centric distribution of commitments for V2V message authentication","authors":"Mujahid Muhammad , Ghazanfar Ali Safdar","doi":"10.1016/j.adhoc.2024.103701","DOIUrl":null,"url":null,"abstract":"<div><div>Safety applications, such as intersection collision warnings and emergency brake warnings, enhance road safety and traffic efficiency through periodic broadcast messages by vehicles and roadside infrastructure. While the Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used security approach, its performance limitations make it unsuitable for time-critical safety applications. As such, a symmetric cryptography-based technique called Timed Efficient Stream Loss-tolerant Authentication (TESLA) offers a viable alternative. However, applying standard TESLA in the context of vehicle-to-vehicle (V2V) communications has its own challenges. One challenge is the difficulty of distributing authentication information called commitments in the highly dynamic V2V environment. In this paper, we propose two novel solutions to this problem, namely, V2X Application Server (VAS)-centric and vehicle-centric. The former is an application-level solution that involves selective unicasting of commitments to vehicles by a central server, the VAS, and the latter is a reactive scheme that involves the periodic broadcast of commitments by the vehicles themselves. Extensive simulations are conducted using representatives of the real V2V environment to evaluate the performance of these approaches under different traffic situations; as well as performance comparison with a state-of-the-art distribution solution. The simulation results indicate that the VAS-centric solution is preferable for use in a TESLA-like V2V security scheme. It demonstrates desirable features, including timely delivery of commitments and high distribution efficiency, with over 95 % of commitments sent by the VAS are associated with relevant safety messages when compared with the vehicle-centric and state-of-the-art solutions. Formal security analysis, conducted using the Random Oracle Model (ROM), proves the correctness of our proposed distribution schemes. Additionally, an informal security analysis shows the resilience of the proposed schemes against various attacks, including impersonation, replay, and bogus commitment messages.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"167 ","pages":"Article 103701"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524003123","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Safety applications, such as intersection collision warnings and emergency brake warnings, enhance road safety and traffic efficiency through periodic broadcast messages by vehicles and roadside infrastructure. While the Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used security approach, its performance limitations make it unsuitable for time-critical safety applications. As such, a symmetric cryptography-based technique called Timed Efficient Stream Loss-tolerant Authentication (TESLA) offers a viable alternative. However, applying standard TESLA in the context of vehicle-to-vehicle (V2V) communications has its own challenges. One challenge is the difficulty of distributing authentication information called commitments in the highly dynamic V2V environment. In this paper, we propose two novel solutions to this problem, namely, V2X Application Server (VAS)-centric and vehicle-centric. The former is an application-level solution that involves selective unicasting of commitments to vehicles by a central server, the VAS, and the latter is a reactive scheme that involves the periodic broadcast of commitments by the vehicles themselves. Extensive simulations are conducted using representatives of the real V2V environment to evaluate the performance of these approaches under different traffic situations; as well as performance comparison with a state-of-the-art distribution solution. The simulation results indicate that the VAS-centric solution is preferable for use in a TESLA-like V2V security scheme. It demonstrates desirable features, including timely delivery of commitments and high distribution efficiency, with over 95 % of commitments sent by the VAS are associated with relevant safety messages when compared with the vehicle-centric and state-of-the-art solutions. Formal security analysis, conducted using the Random Oracle Model (ROM), proves the correctness of our proposed distribution schemes. Additionally, an informal security analysis shows the resilience of the proposed schemes against various attacks, including impersonation, replay, and bogus commitment messages.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.