Fangbing Xu , Xiaohui Jiang , Lin Zhang , Nuo Chen
{"title":"Analysis of the impacts of coal mining on baseflow changes under the Budyko framework: A case study of Northern Shaanxi, China","authors":"Fangbing Xu , Xiaohui Jiang , Lin Zhang , Nuo Chen","doi":"10.1016/j.pce.2024.103810","DOIUrl":null,"url":null,"abstract":"<div><div>Coal mining alters the regional and local hydrogeological conditions and subsurface parameters, significantly impacting the hydrological cycle. Baseflow is particularly sensitive to changes in subsurface parameters and hydrogeological conditions. Therefore, studying the impact of coal mining on baseflow is crucial for understanding its effects on the water cycle. In this paper, 9 segmentation methods are used to separate the baseflow, after the applicability analysis, the Chapman-Maxwell and Boughton-Chapman separation methods were used. The Mann-Kendall and Pettitt tests are employed to determine the mutation years of baseflow. Finally, within the Budyko framework, the elasticity coefficient is calculated to estimate the changes in baseflow attributed to variations in precipitation, potential evapotranspiration, and underlying surface index. The results indicate that: (1) Based on the comparison of results and error analysis, we conclude that the Chapman-Maxwell separation method and the Boughton-Chapman separation method are the most suitable for the typical basins in the Shaanxi mining area. (2) During the study period, baseflow experienced a mutation in the late 1990s and showed an overall declining trend. (3) There is spatial heterogeneity in the influence of coal mining activities on baseflow, which has a negative impact. The change of base flow after mutation is −2.86 × 10<sup>8</sup> m<sup>3</sup>.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"137 ","pages":"Article 103810"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524002687","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coal mining alters the regional and local hydrogeological conditions and subsurface parameters, significantly impacting the hydrological cycle. Baseflow is particularly sensitive to changes in subsurface parameters and hydrogeological conditions. Therefore, studying the impact of coal mining on baseflow is crucial for understanding its effects on the water cycle. In this paper, 9 segmentation methods are used to separate the baseflow, after the applicability analysis, the Chapman-Maxwell and Boughton-Chapman separation methods were used. The Mann-Kendall and Pettitt tests are employed to determine the mutation years of baseflow. Finally, within the Budyko framework, the elasticity coefficient is calculated to estimate the changes in baseflow attributed to variations in precipitation, potential evapotranspiration, and underlying surface index. The results indicate that: (1) Based on the comparison of results and error analysis, we conclude that the Chapman-Maxwell separation method and the Boughton-Chapman separation method are the most suitable for the typical basins in the Shaanxi mining area. (2) During the study period, baseflow experienced a mutation in the late 1990s and showed an overall declining trend. (3) There is spatial heterogeneity in the influence of coal mining activities on baseflow, which has a negative impact. The change of base flow after mutation is −2.86 × 108 m3.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).