Luqiang Li , Hongqu Jiang , Yuan Luo , Haijun Wu , Qi Zhao , Xingxia Yang , Caiju Li , Jianhong Yi , Yichun Liu
{"title":"A study of the friction and thermal properties of epoxy composites synergistically reinforced by open-celled Cu foams and carboxylated CNTs","authors":"Luqiang Li , Hongqu Jiang , Yuan Luo , Haijun Wu , Qi Zhao , Xingxia Yang , Caiju Li , Jianhong Yi , Yichun Liu","doi":"10.1016/j.diamond.2024.111791","DOIUrl":null,"url":null,"abstract":"<div><div>Epoxy resin (EP) plays an important role in the field of friction, but its poor thermal conductivity limits its mature development in industry. To solve this problem, open cell copper foam (Cu<sub>f</sub>) and carboxylated carbon nanotubes (C-CNTs) were incorporated into the epoxy group as co-intensifiers to improve its thermal conductivity and frictional properties. The results demonstrate that increasing the pore density of Cu<sub>f</sub>/EP composite copper foam leads to a 33.6 % reduction in wear rate and 23.2 times increase in thermal conductivity when reaching 130 Pores Per Inch (PPI). Furthermore, increasing the content of C-CNTs in Cu<sub>f</sub>®(C-CNTs/EP) composites resulted in decreased friction coefficient and wear rate; at 0.75 wt% C-CNTs content, the friction coefficient decreased by 9.5 % and the wear rate decreased by 40.6 % compared to that of the (130PPICu<sub>f</sub>)/EP composites while also achieving a 54.8 % increase in thermal conductivity.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111791"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524010045","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Epoxy resin (EP) plays an important role in the field of friction, but its poor thermal conductivity limits its mature development in industry. To solve this problem, open cell copper foam (Cuf) and carboxylated carbon nanotubes (C-CNTs) were incorporated into the epoxy group as co-intensifiers to improve its thermal conductivity and frictional properties. The results demonstrate that increasing the pore density of Cuf/EP composite copper foam leads to a 33.6 % reduction in wear rate and 23.2 times increase in thermal conductivity when reaching 130 Pores Per Inch (PPI). Furthermore, increasing the content of C-CNTs in Cuf®(C-CNTs/EP) composites resulted in decreased friction coefficient and wear rate; at 0.75 wt% C-CNTs content, the friction coefficient decreased by 9.5 % and the wear rate decreased by 40.6 % compared to that of the (130PPICuf)/EP composites while also achieving a 54.8 % increase in thermal conductivity.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.