Migration of a slip-spin solid spherical particle in a micropolar fluid-filled circular cylindrical tube

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Journal of Physics Pub Date : 2024-10-25 DOI:10.1016/j.cjph.2024.10.024
Ahmed G. Salem
{"title":"Migration of a slip-spin solid spherical particle in a micropolar fluid-filled circular cylindrical tube","authors":"Ahmed G. Salem","doi":"10.1016/j.cjph.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>A combined study analytically and numerically for the axially symmetric creeping flow due to a slip-spin solid sphere surface moving in a microstructure fluid of micropolar type along the centreline of a circular cylindrical tube is introduced. This investigation was presented under low Reynolds number conditions. A general solution is obtained by superposing the essential solutions in both spherical and cylindrical coordinates to solve the Eringen micropolar field equations. The condition of the microrotation, along with couple stress, is used at the surface of the solid particle; while the microrotation is used at the inner cylindrical surface. Boundary conditions are imposed initially on the inner cylindrical surface using Fourier transforms and subsequently on the outer surface of the solid particle using a collocation technique. This paper aims to study the wall interaction problem of a translating slip-spin solid spherical particle in a micropolar fluid along the centreline of a circular cylindrical tube. The study also investigates the effect of the addition of slip conditions for velocity and microrotation on the surface of a solid particle. There is good convergence in the numerical findings obtained for the normalised hydrodynamic drag force (the tube-corrected factor) applying on the surface of the solid particle for several values of the micropolarity coefficient, slip-spin coefficients, and the ratio between the radius of the solid particle and tube. Regarding the flow of a solid spherical particle along the centreline of a cylindrical tube, our drag findings compare favourably to the solutions found in the literature. We found that the normalised drag force acting on the solid particle monotonically increases with the increase of the particle-to-tube radius ratio and reaches infinity in the limitless, with the increase of the micropolarity coefficient, and with the increase of the slip-spin coefficients for a steady ratio of particle-to-tube radius.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"92 ","pages":"Pages 1144-1157"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004155","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A combined study analytically and numerically for the axially symmetric creeping flow due to a slip-spin solid sphere surface moving in a microstructure fluid of micropolar type along the centreline of a circular cylindrical tube is introduced. This investigation was presented under low Reynolds number conditions. A general solution is obtained by superposing the essential solutions in both spherical and cylindrical coordinates to solve the Eringen micropolar field equations. The condition of the microrotation, along with couple stress, is used at the surface of the solid particle; while the microrotation is used at the inner cylindrical surface. Boundary conditions are imposed initially on the inner cylindrical surface using Fourier transforms and subsequently on the outer surface of the solid particle using a collocation technique. This paper aims to study the wall interaction problem of a translating slip-spin solid spherical particle in a micropolar fluid along the centreline of a circular cylindrical tube. The study also investigates the effect of the addition of slip conditions for velocity and microrotation on the surface of a solid particle. There is good convergence in the numerical findings obtained for the normalised hydrodynamic drag force (the tube-corrected factor) applying on the surface of the solid particle for several values of the micropolarity coefficient, slip-spin coefficients, and the ratio between the radius of the solid particle and tube. Regarding the flow of a solid spherical particle along the centreline of a cylindrical tube, our drag findings compare favourably to the solutions found in the literature. We found that the normalised drag force acting on the solid particle monotonically increases with the increase of the particle-to-tube radius ratio and reaches infinity in the limitless, with the increase of the micropolarity coefficient, and with the increase of the slip-spin coefficients for a steady ratio of particle-to-tube radius.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑旋固体球形粒子在充满微极性流体的圆柱形圆管中的迁移
本文介绍了对滑旋固体球面在沿圆柱管中心线运动的微波型微结构流体中产生的轴对称蠕动流进行的分析和数值综合研究。该研究是在低雷诺数条件下进行的。通过叠加球坐标和圆柱坐标下的基本解来求解艾林根微极场方程,从而获得了一般解。在固体颗粒表面使用了微旋转条件和耦合应力;而在内圆柱表面使用了微旋转条件。边界条件最初通过傅立叶变换施加在内圆柱面上,随后通过搭配技术施加在固体颗粒的外表面上。本文旨在研究滑旋固体球形粒子在微极性流体中沿圆柱管中心线平移时的壁面相互作用问题。研究还探讨了在固体颗粒表面添加速度和微旋转滑移条件的影响。对于固体颗粒表面上的归一化流体动力阻力(管校正系数),在微极性系数、滑旋系数和固体颗粒与管半径之比取值时,数值结果收敛性良好。关于固体球形粒子沿圆柱形管中心线的流动,我们的阻力研究结果与文献中的解决方案相比毫不逊色。我们发现,作用在固体颗粒上的归一化阻力随着颗粒与管子半径比的增大而单调增大,并在无限大的情况下达到无穷大;在颗粒与管子半径比稳定的情况下,随着微极性系数的增大以及滑旋系数的增大而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
期刊最新文献
The evolution of dissipative soliton resonance from noise-like pulse via the saturable absorption to reverse saturable absorption transition within covalent organic framework saturable absorbers Manipulating dwell time and spin polarization via δ-doping for electrons in spin-orbit-coupling modulated magnetic nanostructure Simultaneous cooling of high-frequency difference resonators through voltage modulation and intracavity-squeezed light Dynamical analysis and hardware verification of a new multistable memristive hyperchaotic map Ultrahigh quality factor cavity based on double dielectric nanocylinder metasurfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1