BACAD: AI-based framework for detecting vertical broken access control attacks

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-11-10 DOI:10.1016/j.eij.2024.100571
Ahmed Anas , Ayman A. Alhelbawy , Salwa El Gamal , Basheer Youssef
{"title":"BACAD: AI-based framework for detecting vertical broken access control attacks","authors":"Ahmed Anas ,&nbsp;Ayman A. Alhelbawy ,&nbsp;Salwa El Gamal ,&nbsp;Basheer Youssef","doi":"10.1016/j.eij.2024.100571","DOIUrl":null,"url":null,"abstract":"<div><div>Vertical Broken Access Control (VBAC) vulnerability is one of the most commonly identified issues in web applications, posing significant risks. Consequently, addressing this pervasive threat is crucial for ensuring system confidentiality and integrity. Broken access control attack detector (BACAD) is a novel framework that leverages advanced AI techniques to neutralize VBAC exploits and attacks in real-time using a dynamic and practical technique. The detection process consists of two steps. The first step is user role classification using an advanced artificial intelligence (AI) model created in a learning phase. The learning phase includes BACAD initial configuration and application user roles traffic generation used for AI model training. The AI model at the core of BACAD analyzes web requests and responses utilizing a robust feature extraction, and dynamic hyperparameter tuning to ensure optimal performance across diverse scenarios. The second step is the decision step, which determines whether the incoming request–response pair is benign or an attack by validating it vs the BACAD session information set. The evaluation against a spectrum of real-world and demonstration web applications highlights remarkable efficiency in detecting VBAC exploits, providing robust application protection against different sets of VBAC attacks. Furthermore, it shows that BACAD addresses the VBAC problem by presenting an applicable, dynamic, flexible, and technology-independent solution to counter VBAC vulnerability risks. Thus, BACAD contributes significantly to the ongoing efforts aimed at enhancing web application security.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100571"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001348","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical Broken Access Control (VBAC) vulnerability is one of the most commonly identified issues in web applications, posing significant risks. Consequently, addressing this pervasive threat is crucial for ensuring system confidentiality and integrity. Broken access control attack detector (BACAD) is a novel framework that leverages advanced AI techniques to neutralize VBAC exploits and attacks in real-time using a dynamic and practical technique. The detection process consists of two steps. The first step is user role classification using an advanced artificial intelligence (AI) model created in a learning phase. The learning phase includes BACAD initial configuration and application user roles traffic generation used for AI model training. The AI model at the core of BACAD analyzes web requests and responses utilizing a robust feature extraction, and dynamic hyperparameter tuning to ensure optimal performance across diverse scenarios. The second step is the decision step, which determines whether the incoming request–response pair is benign or an attack by validating it vs the BACAD session information set. The evaluation against a spectrum of real-world and demonstration web applications highlights remarkable efficiency in detecting VBAC exploits, providing robust application protection against different sets of VBAC attacks. Furthermore, it shows that BACAD addresses the VBAC problem by presenting an applicable, dynamic, flexible, and technology-independent solution to counter VBAC vulnerability risks. Thus, BACAD contributes significantly to the ongoing efforts aimed at enhancing web application security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BACAD:基于人工智能的垂直破坏访问控制攻击检测框架
垂直断点访问控制(VBAC)漏洞是网络应用程序中最常发现的问题之一,会带来重大风险。因此,解决这一普遍存在的威胁对于确保系统的保密性和完整性至关重要。破损访问控制攻击检测器(BACAD)是一个新颖的框架,它利用先进的人工智能技术,采用动态和实用的技术实时消除 VBAC 漏洞和攻击。检测过程包括两个步骤。第一步是使用在学习阶段创建的高级人工智能(AI)模型进行用户角色分类。学习阶段包括 BACAD 初始配置和用于人工智能模型训练的应用程序用户角色流量生成。BACAD 核心的人工智能模型利用强大的特征提取和动态超参数调整来分析网络请求和响应,以确保在不同场景中实现最佳性能。第二步是决策步骤,通过对 BACAD 会话信息集进行验证,确定传入的请求-响应对是良性的还是攻击。针对一系列真实世界和演示网络应用程序的评估结果表明,BACAD 在检测 VBAC 攻击方面具有显著的效率,能针对不同的 VBAC 攻击集提供强大的应用程序保护。此外,评估结果表明,BACAD 通过提供一种适用、动态、灵活且与技术无关的解决方案来应对 VBAC 漏洞风险,从而解决了 VBAC 问题。因此,BACAD 对目前旨在增强网络应用程序安全性的努力做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
An improved multiobjective evolutionary algorithm for time-dependent vehicle routing problem with time windows Distributed hybrid flowshop scheduling with consistent sublots under delivery time windows: A penalty lot-assisted iterated greedy algorithm Cyber epidemic spread forecasting based on the entropy-extremal dynamic interpretation of the SIR model BACAD: AI-based framework for detecting vertical broken access control attacks MRI-based brain tumor ensemble classification using two stage score level fusion and CNN models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1