Yabin Zhu , Lijuan Niu , Jianlong Chai , Ji Wang , Peng Jin , Boyu Chen , Dong Wang , Yuanfei Li , Tongmin Zhang , Tielong Shen , Cunfeng Yao , Zhiguang Wang
{"title":"Structural damage and bubble evolution in SiC-ZrC composite irradiated with 500 keV He-ions at various temperatures","authors":"Yabin Zhu , Lijuan Niu , Jianlong Chai , Ji Wang , Peng Jin , Boyu Chen , Dong Wang , Yuanfei Li , Tongmin Zhang , Tielong Shen , Cunfeng Yao , Zhiguang Wang","doi":"10.1016/j.jeurceramsoc.2024.117054","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic composites with high temperature strengths and low neutron cross-sections are promising candidates for core materials in advanced nuclear systems. In present work, SiC-20 vol% ZrC composites were irradiated with 500 keV He-ions at 25, 500 and 800 °C to evaluate the effect of irradiation temperature on the structural damage and bubble evolution in ceramic composites. XRD and Raman spectra analysis give that the irradiation resulted in structural damages of both SiC and ZrC. TEM observations reveal the formation of helium bubbles and defect clusters after irradiation. Moreover, the occurrence of micro-cracks in ZrC grains and amorphization of SiC are observed for the samples irradiated at room temperature. Nanoindentation test showed that there is irradiation induced hardening or softening of the composites which depends on the irradiation temperature or fluence. The correlation between microstructural evolution and mechanical properties response is discussed.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 117054"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924009270","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramic composites with high temperature strengths and low neutron cross-sections are promising candidates for core materials in advanced nuclear systems. In present work, SiC-20 vol% ZrC composites were irradiated with 500 keV He-ions at 25, 500 and 800 °C to evaluate the effect of irradiation temperature on the structural damage and bubble evolution in ceramic composites. XRD and Raman spectra analysis give that the irradiation resulted in structural damages of both SiC and ZrC. TEM observations reveal the formation of helium bubbles and defect clusters after irradiation. Moreover, the occurrence of micro-cracks in ZrC grains and amorphization of SiC are observed for the samples irradiated at room temperature. Nanoindentation test showed that there is irradiation induced hardening or softening of the composites which depends on the irradiation temperature or fluence. The correlation between microstructural evolution and mechanical properties response is discussed.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.