Tailoring the catalytic activity of PrBaFe2O5+δ cathode material with non-transition metal In-doping for solid oxide fuel cells

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of The European Ceramic Society Pub Date : 2024-11-06 DOI:10.1016/j.jeurceramsoc.2024.117057
Jinyan Qi , Chenshuo Yuan , Hui Ye , Pengkai Shan , Shuiqing Li , Shoucheng He , Han Chen , Lin Ge , Yifeng Zheng
{"title":"Tailoring the catalytic activity of PrBaFe2O5+δ cathode material with non-transition metal In-doping for solid oxide fuel cells","authors":"Jinyan Qi ,&nbsp;Chenshuo Yuan ,&nbsp;Hui Ye ,&nbsp;Pengkai Shan ,&nbsp;Shuiqing Li ,&nbsp;Shoucheng He ,&nbsp;Han Chen ,&nbsp;Lin Ge ,&nbsp;Yifeng Zheng","doi":"10.1016/j.jeurceramsoc.2024.117057","DOIUrl":null,"url":null,"abstract":"<div><div>Double perovskite PrBaFe<sub>2</sub>O<sub>5+δ</sub> (PBF) is a promising cathode material for solid oxide fuel cell (SOFCs) due to the favorable catalytic activity and superior electrochemical stability. Herein, to further tailor the oxygen-ion transport kinetics and electrochemical performance, unlike the typical approach through using higher valence, non-transition metal In<sup>3+</sup> ion doping is initially investigated to partially replace Fe<sup>3+</sup>/Fe<sup>4+</sup> site, forming the compositions of PrBaFe<sub>2−x</sub>In<sub>x</sub>O<sub>5+δ</sub> (PBFInx, x = 0, 0.05, 0.1, and 0.15). Xray diffraction (XRD) analysis indicates that PBFInx exhibit satisfactory chemical and thermal compatibility with the gadolinia-doped ceria (GDC) electrolyte. Expectedly, the polarization resistance (Rp) of PBFIn<sub>0.1</sub> cathode is decreased by approximately 40 % and an anode-supported single cell with PBFIn<sub>0.1</sub> cathode yields a 36 % higher peak power density (PPD) at 800 °C compared to that of PBF. Moreover, the single cell using PBFIn<sub>0.1</sub> as the cathode can be operated stably at 0.4 A cm<sup>−2</sup> for more than 50 h without obvious performance degradation. In addition, the X-ray photoelectron spectroscopy (XPS) results confirm that the low-valence state In<sup>3+</sup> introduced into PBF have a positive impact on the oxygen vacancy concentration and boost the oxygen reduction reaction (ORR) activity, thus significantly enhancing the electrochemical performance of the PBF cathode. The results show that the non-transition metal In<sup>3+</sup> ion doping is an effective method to improve the performance of the PBF cathode for SOFCs.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 117057"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924009300","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Double perovskite PrBaFe2O5+δ (PBF) is a promising cathode material for solid oxide fuel cell (SOFCs) due to the favorable catalytic activity and superior electrochemical stability. Herein, to further tailor the oxygen-ion transport kinetics and electrochemical performance, unlike the typical approach through using higher valence, non-transition metal In3+ ion doping is initially investigated to partially replace Fe3+/Fe4+ site, forming the compositions of PrBaFe2−xInxO5+δ (PBFInx, x = 0, 0.05, 0.1, and 0.15). Xray diffraction (XRD) analysis indicates that PBFInx exhibit satisfactory chemical and thermal compatibility with the gadolinia-doped ceria (GDC) electrolyte. Expectedly, the polarization resistance (Rp) of PBFIn0.1 cathode is decreased by approximately 40 % and an anode-supported single cell with PBFIn0.1 cathode yields a 36 % higher peak power density (PPD) at 800 °C compared to that of PBF. Moreover, the single cell using PBFIn0.1 as the cathode can be operated stably at 0.4 A cm−2 for more than 50 h without obvious performance degradation. In addition, the X-ray photoelectron spectroscopy (XPS) results confirm that the low-valence state In3+ introduced into PBF have a positive impact on the oxygen vacancy concentration and boost the oxygen reduction reaction (ORR) activity, thus significantly enhancing the electrochemical performance of the PBF cathode. The results show that the non-transition metal In3+ ion doping is an effective method to improve the performance of the PBF cathode for SOFCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非过渡金属 In 掺杂技术定制用于固体氧化物燃料电池的 PrBaFe2O5+δ 阴极材料的催化活性
双包晶PrBaFe2O5+δ(PBF)具有良好的催化活性和优异的电化学稳定性,是一种前景广阔的固体氧化物燃料电池(SOFC)阴极材料。在此,为了进一步定制氧离子传输动力学和电化学性能,与使用高价非过渡金属 In3+ 离子掺杂的典型方法不同,我们首先研究了如何部分取代 Fe3+/Fe4+ 位点,形成 PrBaFe2-xInxO5+δ (PBFInx,x = 0、0.05、0.1 和 0.15)的组成。X 射线衍射(XRD)分析表明,PBFInx 与钆掺杂陶瓷(GDC)电解质具有令人满意的化学和热相容性。预计 PBFIn0.1 阴极的极化电阻(Rp)将降低约 40%,与 PBF 相比,采用 PBFIn0.1 阴极的阳极支持单电池在 800 °C 时的峰值功率密度(PPD)高出 36%。此外,使用 PBFIn0.1 作为阴极的单电池可在 0.4 A cm-2 下稳定运行 50 小时以上,而不会出现明显的性能下降。此外,X 射线光电子能谱(XPS)结果证实,PBF 中引入的低价态 In3+ 对氧空位浓度有积极影响,并能提高氧还原反应(ORR)活性,从而显著提高 PBF 阴极的电化学性能。研究结果表明,非过渡金属 In3+ 离子掺杂是提高 SOFCs 中 PBF 阴极性能的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
期刊最新文献
Amorphous SiOC-coated submicron mullite aerogels with excellent thermal and structural stability up to 1500 ℃ Oxidation behavior of (Hf0.2Zr0.2Ta0.2Ti0.2Me0.2)B2 (Me=Nb,Cr) high-entropy ceramics at 1200 °C in air Properties of multiple rare earth oxides co-stabilized YDyGdSmNd-TZP ceramics HfB2-SiC ceramics fabricated by reactive melt infiltration and its long-term oxidation behavior at 1650°C Optimized electrostrain with minimal hysteresis at the MPB in BNT-based ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1