Mohadeseh Khoshandam , Hossein Soltaninejad , Saman Hosseinkhani , Zohreh Saltanatpour , Mohammad Taghi Hedayati Goudarzi , Amir Ali Hamidieh
{"title":"CRISPR/Cas and artificial intelligence to improve precision medicine: Future perspectives and potential limitations","authors":"Mohadeseh Khoshandam , Hossein Soltaninejad , Saman Hosseinkhani , Zohreh Saltanatpour , Mohammad Taghi Hedayati Goudarzi , Amir Ali Hamidieh","doi":"10.1016/j.humgen.2024.201356","DOIUrl":null,"url":null,"abstract":"<div><div>The CRISPR/Cas9 genome editing system is a unique and new technology that allows genetics and medical researchers to modify or edit parts of the genome. This is achieved by deleting, inserting, or changing parts of the DNA sequence. Currently, this method is considered the simplest, most widely used, and most accurate method of genetic manipulation. The system holds great potential for treating a wide range of genetic diseases. However, further research is necessary to determine the advantages and disadvantages of the CRISPR system and to establish best practices. On the other hand, individual patient treatment is a primary goal in the medical field. This goal has proven elusive due to a complex set of factors affecting disease and health. Recent advancements in enabling technologies that promote personalized and precision medicine are highlighted in this work. Artificial intelligence, which simulates human intelligence for computers, is utilized in the interface of machines programmed to think and behave like humans. This review article summarizes recent developments in the fields of artificial intelligence (AI) and CRISPR/Cas9, examining clinical trials and potential advancements in precision and personalized medicine, cancer treatment, and current/future challenges. Specifically, the application of AI in modifying the CRISPR/Cas9 system is emphasized.</div></div>","PeriodicalId":29686,"journal":{"name":"Human Gene","volume":"42 ","pages":"Article 201356"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773044124001001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The CRISPR/Cas9 genome editing system is a unique and new technology that allows genetics and medical researchers to modify or edit parts of the genome. This is achieved by deleting, inserting, or changing parts of the DNA sequence. Currently, this method is considered the simplest, most widely used, and most accurate method of genetic manipulation. The system holds great potential for treating a wide range of genetic diseases. However, further research is necessary to determine the advantages and disadvantages of the CRISPR system and to establish best practices. On the other hand, individual patient treatment is a primary goal in the medical field. This goal has proven elusive due to a complex set of factors affecting disease and health. Recent advancements in enabling technologies that promote personalized and precision medicine are highlighted in this work. Artificial intelligence, which simulates human intelligence for computers, is utilized in the interface of machines programmed to think and behave like humans. This review article summarizes recent developments in the fields of artificial intelligence (AI) and CRISPR/Cas9, examining clinical trials and potential advancements in precision and personalized medicine, cancer treatment, and current/future challenges. Specifically, the application of AI in modifying the CRISPR/Cas9 system is emphasized.