{"title":"Investigation on the impact of green synthesized N-C-dots decoration over photocatalytic efficiency of S-g-C3N4/ZnO","authors":"Permender Singh , Neeru Rani , Vasundhara Madaan , Sandeep Kumar , Vinita Bhankar , Parmod Kumar , Krishan Kumar","doi":"10.1016/j.diamond.2024.111780","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, green synthesized N-doped carbon dots (N-C-dots) and in-situ produced binary composites of sulphur-doped graphitic carbon nitride (S-g-C<sub>3</sub>N<sub>4</sub>) and ZnO have been hydrothermally treated to develop their ternary composite, i.e., N-C-dots/S-g-C<sub>3</sub>N<sub>4</sub>/ZnO (N-C-dots/SgCN/ZnO) to investigate the impact of N-C-dots decoration over SgCN/ZnO for photocatalytic decomposition of rhodamine B (RhB) dye. The obtained N-C-dots are almost spherical and exhibited remarkable crystalline properties, with particles diameters ranging from 6.21 to 12.56 nm. The obtained ternary composite N-C-dots/SgCN/ZnO showed noticeably higher photocatalytic effectiveness than its constituents' components. Additionally, N-C-dots/SgCN/ZnO demonstrated outstanding photocatalytic decomposition (93.49 %) of RhB dye under optimized conditions in only 35 min. Various dye degradation parameters like photocatalyst dose, dye concentration, pH of dye solution have been optimized for RhB degradation along with impacts of different scavengers. The results of capturing experiments revealed that h<sup>+</sup>, <sup>•</sup>O<sub>2</sub><sup>−</sup> and <sup>•</sup>OH radicals are main components for photocatalytic breakdown of dye with O<sub>2</sub><sup>• −</sup> rendering the major degradation, whereas <sup>•</sup>OH and h<sup>+</sup> have minor involvement. N-C-dots/SgCN/ZnO demonstrated outstanding reusability up to five cycles by degrading 85.54 % RhB dye in 5th cycle in just 35 min. Additionally, only slight variations are observed in XRD pattern of freshly produced and recycled sample, indicating exceptional ternary composite stability.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111780"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009932","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, green synthesized N-doped carbon dots (N-C-dots) and in-situ produced binary composites of sulphur-doped graphitic carbon nitride (S-g-C3N4) and ZnO have been hydrothermally treated to develop their ternary composite, i.e., N-C-dots/S-g-C3N4/ZnO (N-C-dots/SgCN/ZnO) to investigate the impact of N-C-dots decoration over SgCN/ZnO for photocatalytic decomposition of rhodamine B (RhB) dye. The obtained N-C-dots are almost spherical and exhibited remarkable crystalline properties, with particles diameters ranging from 6.21 to 12.56 nm. The obtained ternary composite N-C-dots/SgCN/ZnO showed noticeably higher photocatalytic effectiveness than its constituents' components. Additionally, N-C-dots/SgCN/ZnO demonstrated outstanding photocatalytic decomposition (93.49 %) of RhB dye under optimized conditions in only 35 min. Various dye degradation parameters like photocatalyst dose, dye concentration, pH of dye solution have been optimized for RhB degradation along with impacts of different scavengers. The results of capturing experiments revealed that h+, •O2− and •OH radicals are main components for photocatalytic breakdown of dye with O2• − rendering the major degradation, whereas •OH and h+ have minor involvement. N-C-dots/SgCN/ZnO demonstrated outstanding reusability up to five cycles by degrading 85.54 % RhB dye in 5th cycle in just 35 min. Additionally, only slight variations are observed in XRD pattern of freshly produced and recycled sample, indicating exceptional ternary composite stability.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.