Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer

IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics: X Pub Date : 2024-11-14 DOI:10.1016/j.ijpx.2024.100302
Xing Liu, Wenwen Shen
{"title":"Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer","authors":"Xing Liu,&nbsp;Wenwen Shen","doi":"10.1016/j.ijpx.2024.100302","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100302"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000744","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负载有吡罗替尼的曲妥珠单抗功能化 SK-BR-3 细胞膜包裹介孔二氧化硅纳米粒子用于 HER-2 阳性乳腺癌的靶向治疗
本研究制备了负载吡罗替尼的曲妥珠单抗功能化SK-BR-3细胞膜包裹介孔二氧化硅纳米颗粒(Tra-CM-MSN-PYR),用于HER2阳性乳腺癌的靶向治疗。透射电子显微镜(TEM)表征显示,MSN具有球形形态和介孔通道,Tra-CM-MSN的结构是成功包覆在MSN表面的细胞膜(CM)层。细胞摄取实验表明,FITC标记的Tra-CM-MSN能被SK-BR-3乳腺癌细胞摄取,这说明Tra-CM-MSN与CM-MSN和MSN相比具有良好的靶向能力。体内成像实验表明,FITC 标记的 Tra-CM-MSN 在肿瘤组织中有显著积累,进一步证明了 Tra-CM-MSN 具有卓越的靶向特性。细胞凋亡实验表明,Tra-CM-MSN-PYR 能明显抑制 SK-BR-3 乳腺癌细胞的增殖。体内动物实验结果也表明,Tra-CM-MSN-PYR 能明显抑制肿瘤生长。这些结果表明,Tra-CM-MSN-PYR 未来有可能用作 HER2 阳性乳腺癌的靶向疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Pharmaceutics: X
International Journal of Pharmaceutics: X Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.60
自引率
0.00%
发文量
32
审稿时长
24 days
期刊最新文献
Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer Ultrasound-targeted sirolimus-loaded microbubbles improves acute rejection of heart transplantation in rats by inhibiting TGF-β1-Smad signaling pathway, promoting autophagy and reducing inflammation A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends From design to 3D printing: A proof-of-concept study for multiple unit particle systems (MUPS) printed by dual extrusion fused filament fabrication Augmented glycerosomes as a promising approach against fungal ear infection: Optimization and microbiological, ex vivo and in vivo assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1