首页 > 最新文献

International Journal of Pharmaceutics: X最新文献

英文 中文
Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer 负载有吡罗替尼的曲妥珠单抗功能化 SK-BR-3 细胞膜包裹介孔二氧化硅纳米粒子用于 HER-2 阳性乳腺癌的靶向治疗
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-14 DOI: 10.1016/j.ijpx.2024.100302
Xing Liu, Wenwen Shen
In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.
本研究制备了负载吡罗替尼的曲妥珠单抗功能化SK-BR-3细胞膜包裹介孔二氧化硅纳米颗粒(Tra-CM-MSN-PYR),用于HER2阳性乳腺癌的靶向治疗。透射电子显微镜(TEM)表征显示,MSN具有球形形态和介孔通道,Tra-CM-MSN的结构是成功包覆在MSN表面的细胞膜(CM)层。细胞摄取实验表明,FITC标记的Tra-CM-MSN能被SK-BR-3乳腺癌细胞摄取,这说明Tra-CM-MSN与CM-MSN和MSN相比具有良好的靶向能力。体内成像实验表明,FITC 标记的 Tra-CM-MSN 在肿瘤组织中有显著积累,进一步证明了 Tra-CM-MSN 具有卓越的靶向特性。细胞凋亡实验表明,Tra-CM-MSN-PYR 能明显抑制 SK-BR-3 乳腺癌细胞的增殖。体内动物实验结果也表明,Tra-CM-MSN-PYR 能明显抑制肿瘤生长。这些结果表明,Tra-CM-MSN-PYR 未来有可能用作 HER2 阳性乳腺癌的靶向疗法。
{"title":"Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer","authors":"Xing Liu,&nbsp;Wenwen Shen","doi":"10.1016/j.ijpx.2024.100302","DOIUrl":"10.1016/j.ijpx.2024.100302","url":null,"abstract":"<div><div>In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100302"},"PeriodicalIF":5.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound-targeted sirolimus-loaded microbubbles improves acute rejection of heart transplantation in rats by inhibiting TGF-β1-Smad signaling pathway, promoting autophagy and reducing inflammation 超声靶向西罗莫司负载微气泡通过抑制 TGF-β1-Smad 信号通路、促进自噬和减轻炎症,改善大鼠心脏移植的急性排斥反应
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-04 DOI: 10.1016/j.ijpx.2024.100300
Haiwei Bao, Lulu Dai, Huiyang Wang, Tianan Jiang
Acute rejection (AR) remains a pivotal complication and leading cause of mortality within the first year following heart transplantation (HT). In this study, we assessed the impact of ultrasound-targeted microbubbles loaded with sirolimus (SIR-MBs) on AR in a rat HT model and delved into the underlying mechanisms. We established a rat abdominal ectopic HT model, which was stratified into three groups receiveing the PBS, SIR-MBs + ultrasound-targeted microbubble destruction (UTMD), and sirolimus, respectively. The protective effects of each treatments on survival rate, inflammatory response, autophagy and TGF-β1-Smad signaling pathway-related proteins were evaluted. Additionally, rescue experiment was performed via adding the autophagy inhibitor or TGF-β1 agonist in combination therapy. UTMD combined SIR-MBs mediated 15-fold higher local drug concentration compared to direct sirolimus administration. The infiltration of inflammatory cells in the transplanted hearts indicated that SIR-MBs combined with UTMD were effective in mitigating the inflammatory response, achieving levels significantly lower than those observed in the sirolimus group. Furthermore, after SIR-MBs combined with UTMD treatment, the expression levels of TGF-β1-Smad signaling pathway-related proteins in heart tissues also showed a significant decrease compared to the model control group. Conversely, the expressions of autophagy proteins LC3-II, Beclin-1 and β-arrestin showed an up-regulated trend. Rescue experiments also revealed that the enhancement in survival trends was markedly suppressed following the administration of CsA or SRI-011381, respectively. Collectively, our findings suggest that SIR-MBs combined with UTMD augment the local treatment efficacy for AR in rat HT models by inhibiting the TGF-β1-Smad signaling pathway, promoting autophagy, and alleviating inflammation.
急性排斥反应(AR)仍然是心脏移植(HT)后第一年内的重要并发症和主要致死原因。在这项研究中,我们评估了装载西罗莫司的超声靶向微泡(SIR-MBs)对大鼠心脏移植模型中急性排斥反应的影响,并深入研究了其潜在机制。我们建立了大鼠腹部异位 HT 模型,并将其分为三组,分别接受 PBS、SIR-MBs + 超声靶向微泡破坏(UTMD)和西罗莫司治疗。评估各处理对存活率、炎症反应、自噬和 TGF-β1-Smad 信号通路相关蛋白的保护作用。此外,还通过在联合治疗中加入自噬抑制剂或 TGF-β1 激动剂进行了挽救实验。UTMD联合SIR-MBs介导的局部药物浓度比直接服用西罗莫司高15倍。移植心脏中炎症细胞的浸润情况表明,SIR-MBs 与 UTMD 联用能有效减轻炎症反应,其水平明显低于西罗莫司组。此外,SIR-MBs联合UTMD治疗后,心脏组织中TGF-β1-Smad信号通路相关蛋白的表达水平也比模型对照组显著下降。相反,自噬蛋白LC3-II、Beclin-1和β-arrestin的表达呈上升趋势。挽救实验还发现,分别给予 CsA 或 SRI-011381 后,存活趋势的增强被明显抑制。总之,我们的研究结果表明,SIR-MBs 与UTMD 联合使用可通过抑制 TGF-β1-Smad 信号通路、促进自噬和缓解炎症来增强大鼠 HT 模型中 AR 的局部疗效。
{"title":"Ultrasound-targeted sirolimus-loaded microbubbles improves acute rejection of heart transplantation in rats by inhibiting TGF-β1-Smad signaling pathway, promoting autophagy and reducing inflammation","authors":"Haiwei Bao,&nbsp;Lulu Dai,&nbsp;Huiyang Wang,&nbsp;Tianan Jiang","doi":"10.1016/j.ijpx.2024.100300","DOIUrl":"10.1016/j.ijpx.2024.100300","url":null,"abstract":"<div><div>Acute rejection (AR) remains a pivotal complication and leading cause of mortality within the first year following heart transplantation (HT). In this study, we assessed the impact of ultrasound-targeted microbubbles loaded with sirolimus (SIR-MBs) on AR in a rat HT model and delved into the underlying mechanisms. We established a rat abdominal ectopic HT model, which was stratified into three groups receiveing the PBS, SIR-MBs + ultrasound-targeted microbubble destruction (UTMD), and sirolimus, respectively. The protective effects of each treatments on survival rate, inflammatory response, autophagy and TGF-β1-Smad signaling pathway-related proteins were evaluted. Additionally, rescue experiment was performed <em>via</em> adding the autophagy inhibitor or TGF-β1 agonist in combination therapy. UTMD combined SIR-MBs mediated 15-fold higher local drug concentration compared to direct sirolimus administration. The infiltration of inflammatory cells in the transplanted hearts indicated that SIR-MBs combined with UTMD were effective in mitigating the inflammatory response, achieving levels significantly lower than those observed in the sirolimus group. Furthermore, after SIR-MBs combined with UTMD treatment, the expression levels of TGF-β1-Smad signaling pathway-related proteins in heart tissues also showed a significant decrease compared to the model control group. Conversely, the expressions of autophagy proteins LC3-II, Beclin-1 and β-arrestin showed an up-regulated trend. Rescue experiments also revealed that the enhancement in survival trends was markedly suppressed following the administration of CsA or SRI-011381, respectively. Collectively, our findings suggest that SIR-MBs combined with UTMD augment the local treatment efficacy for AR in rat HT models by inhibiting the TGF-β1-Smad signaling pathway, promoting autophagy, and alleviating inflammation.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100300"},"PeriodicalIF":5.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends 用于预测药粉混合物粒度和粒形、密度和流动性的混合模型系统
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-28 DOI: 10.1016/j.ijpx.2024.100298
Mohammad Salehian , Jonathan Moores , Jonathan Goldie , Isra' Ibrahim , Carlota Mendez Torrecillas , Ishwari Wale , Faisal Abbas , Natalie Maclean , John Robertson , Alastair Florence , Daniel Markl
This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often R2>0.8, utilising raw material properties to reduce time and material resources on preparing and characterising blends.
本文介绍了一套混合模型系统,该系统结合了机理和数据驱动方法,可根据原料成分的特性预测粉末混合物的物理特性。本文开发了机理概率模型,利用原料成分的粒度和粒形分布预测药物混合物的粒度和粒形(以长宽比表示)。此外,还对现有混合物规则预测混合物真实密度和体积密度的准确性进行了评估。利用来自 86 种混合物的数据,开发了两种数据驱动模型来估算混合物的挖掘密度和流动性(以流动功能系数 FFC 表示),该模型利用预测粒度和粒形分布的主成分以及真实密度和体积密度作为输入数据,无需对原料成分进行资源密集型剪切测试,从而节省了时间和材料。设计了一种基于模型的不确定性量化技术,用于分析模型预测的 FFC 的精度。所提出的粒度和粒形混合物模型在预测精度方面优于现有方法(分布百分位数加权平均),同时提供了对混合物全面分布的深入了解。所提出的混合模型系统能准确预测不同配方和成分的混合物特性,R2 通常为 0.8,利用原材料特性减少了制备和表征混合物所需的时间和材料资源。
{"title":"A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends","authors":"Mohammad Salehian ,&nbsp;Jonathan Moores ,&nbsp;Jonathan Goldie ,&nbsp;Isra' Ibrahim ,&nbsp;Carlota Mendez Torrecillas ,&nbsp;Ishwari Wale ,&nbsp;Faisal Abbas ,&nbsp;Natalie Maclean ,&nbsp;John Robertson ,&nbsp;Alastair Florence ,&nbsp;Daniel Markl","doi":"10.1016/j.ijpx.2024.100298","DOIUrl":"10.1016/j.ijpx.2024.100298","url":null,"abstract":"<div><div>This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often <span><math><msup><mi>R</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0.8</mn></math></span>, utilising raw material properties to reduce time and material resources on preparing and characterising blends.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100298"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From design to 3D printing: A proof-of-concept study for multiple unit particle systems (MUPS) printed by dual extrusion fused filament fabrication 从设计到 3D 打印:通过双挤压熔融长丝制造技术打印多单元颗粒系统 (MUPS) 的概念验证研究
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-26 DOI: 10.1016/j.ijpx.2024.100299
Lee Roy Oldfield , Aaron Felix Christofer Mentrup , Stefan Klinken-Uth , Tobias Auel , Anne Seidlitz
MUPS (multiple unit particle systems) are oral dosage forms consisting of small particles which are filled into capsules or compressed into tablets. Compared to monolithic sustained-release tablets, MUPS tablets rapidly disintegrate inside the stomach releasing the contained small particles, which can be emptied from the stomach independent of housekeeping waves. Control of release can be achieved by adapting the particle composition. Despite the advantages of MUPS, only a limited number of preparations are available on the market. 3D printing could be a new advantageous method to produce MUPS tablets compared to the conventional production via tableting. Due to the increasing research interest in personalised medicine, especially regarding dose adjustments, this flexible production approach could be a promising concept. Therefore, this work proposes a concept for printing MUPS tablets using a dual extrusion fused filament fabrication 3D printer. The general idea is that the two print heads can be used independently to print a water-soluble tablet shell with the first print head and incorporate functional particles into the tablet shell with a second print head using different materials for each step. In this study, a modular four-particle-layered tablet computer model containing 196 cylindrical particles with a diameter of 1.4 mm, a height of 1.0 mm and a total tablet size of 22.6 × 8.5 × 6.0 mm is proposed. A first proof-of-concept study with drug-free commercially available polylactic acid filament for the particles and polyvinyl alcohol filament for the tablet shell revealed critical parameters (such as filament retraction, z-offset and water content of filaments) for the successful printing of the proposed computer model. In addition, the successfully printed model 3D-MUPS tablets and incorporated particles were characterised, revealing a reproducible manufacturing process. The printed model particles had a diameter of 1.27 ± 0.04 mm and a height of 1.05 ± 0.01 mm. One of the challenges of the new approach was to avoid particle agglomeration because of remelting processes during the printing with two print heads. 57.54 ± 18.59 % of the 196 printed particles were present as single particles. Finally, the transferability and suitability with a model API-loaded (paracetamol) hydroxypropyl methylcellulose filament for the particles and a polyvinyl alcohol tablet shell was successfully tested. On average, 80 % of paracetamol was released within 3 h (2–4 h). Overall, this work shows an innovative new manufacturing method for dose-adjustable personalised MUPS tablets but also considers new challenges arising from the different manufacturing processes.
MUPS(多单位颗粒系统)是一种由小颗粒组成的口服剂型,这些小颗粒被填充进胶囊或压制成片剂。与单片缓释片相比,MUPS 片剂在胃内迅速崩解,释放出所含的小颗粒,可从胃中排出,不受胃肠蠕动的影响。通过调整颗粒成分可以实现释放控制。尽管 MUPS 具有诸多优势,但目前市场上的制剂数量有限。与传统的片剂生产方式相比,3D 打印是生产 MUPS 片剂的一种新的有利方法。由于个性化医疗的研究兴趣日益浓厚,特别是在剂量调整方面,这种灵活的生产方法可能是一个很有前景的概念。因此,本作品提出了一种使用双挤压熔融长丝制造三维打印机打印 MUPS 片剂的概念。总体思路是,两个打印头可以独立使用,第一个打印头打印水溶性片剂外壳,第二个打印头在每个步骤中使用不同的材料将功能性颗粒融入片剂外壳。本研究提出了一种模块化四颗粒层片剂计算机模型,其中包含 196 个直径为 1.4 毫米、高度为 1.0 毫米的圆柱形颗粒,片剂总尺寸为 22.6 × 8.5 × 6.0 毫米。使用无药物成分的市售聚乳酸长丝制作颗粒,使用聚乙烯醇长丝制作片剂外壳,首次概念验证研究揭示了成功打印拟议计算机模型的关键参数(如长丝回缩、Z 偏移和长丝含水量)。此外,还对成功打印的 3D-MUPS 模型药片和加入的颗粒进行了表征,揭示了可重复的制造过程。打印出的模型颗粒直径为 1.27 ± 0.04 毫米,高度为 1.05 ± 0.01 毫米。这种新方法面临的挑战之一是如何避免在使用两个打印头进行打印的过程中由于重熔过程而导致颗粒团聚。在 196 个打印颗粒中,57.54 ± 18.59 % 为单个颗粒。最后,还成功测试了颗粒与聚乙烯醇片剂外壳之间的可转移性和与负载原料药(扑热息痛)的羟丙基甲基纤维素长丝的适用性。平均而言,80% 的扑热息痛在 3 小时(2-4 小时)内释放。总之,这项工作为剂量可调的个性化 MUPS 片剂展示了一种创新的新生产方法,同时也考虑了不同生产工艺带来的新挑战。
{"title":"From design to 3D printing: A proof-of-concept study for multiple unit particle systems (MUPS) printed by dual extrusion fused filament fabrication","authors":"Lee Roy Oldfield ,&nbsp;Aaron Felix Christofer Mentrup ,&nbsp;Stefan Klinken-Uth ,&nbsp;Tobias Auel ,&nbsp;Anne Seidlitz","doi":"10.1016/j.ijpx.2024.100299","DOIUrl":"10.1016/j.ijpx.2024.100299","url":null,"abstract":"<div><div>MUPS (multiple unit particle systems) are oral dosage forms consisting of small particles which are filled into capsules or compressed into tablets. Compared to monolithic sustained-release tablets, MUPS tablets rapidly disintegrate inside the stomach releasing the contained small particles, which can be emptied from the stomach independent of housekeeping waves. Control of release can be achieved by adapting the particle composition. Despite the advantages of MUPS, only a limited number of preparations are available on the market. 3D printing could be a new advantageous method to produce MUPS tablets compared to the conventional production via tableting. Due to the increasing research interest in personalised medicine, especially regarding dose adjustments, this flexible production approach could be a promising concept. Therefore, this work proposes a concept for printing MUPS tablets using a dual extrusion fused filament fabrication 3D printer. The general idea is that the two print heads can be used independently to print a water-soluble tablet shell with the first print head and incorporate functional particles into the tablet shell with a second print head using different materials for each step. In this study, a modular four-particle-layered tablet computer model containing 196 cylindrical particles with a diameter of 1.4 mm, a height of 1.0 mm and a total tablet size of 22.6 × 8.5 × 6.0 mm is proposed. A first proof-of-concept study with drug-free commercially available polylactic acid filament for the particles and polyvinyl alcohol filament for the tablet shell revealed critical parameters (such as filament retraction, z-offset and water content of filaments) for the successful printing of the proposed computer model. In addition, the successfully printed model 3D-MUPS tablets and incorporated particles were characterised, revealing a reproducible manufacturing process. The printed model particles had a diameter of 1.27 ± 0.04 mm and a height of 1.05 ± 0.01 mm. One of the challenges of the new approach was to avoid particle agglomeration because of remelting processes during the printing with two print heads. 57.54 ± 18.59 % of the 196 printed particles were present as single particles. Finally, the transferability and suitability with a model API-loaded (paracetamol) hydroxypropyl methylcellulose filament for the particles and a polyvinyl alcohol tablet shell was successfully tested. On average, 80 % of paracetamol was released within 3 h (2–4 h). Overall, this work shows an innovative new manufacturing method for dose-adjustable personalised MUPS tablets but also considers new challenges arising from the different manufacturing processes.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100299"},"PeriodicalIF":5.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmented glycerosomes as a promising approach against fungal ear infection: Optimization and microbiological, ex vivo and in vivo assessments 增效甘油三酯体是一种很有前景的抗真菌耳部感染的方法:优化及微生物、体内外评估
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-22 DOI: 10.1016/j.ijpx.2024.100295
Sadek Ahmed , Heba Attia , Osama Saher , Abdurrahman M. Fahmy
In the current study, voriconazole (VCZ) augmented glycerosomes were optimized for topical otomycosis management according to a 23 factorial design, employing a thin film hydration method. By optimizing Glycerol volume, limonene: VCZ ratio and Span® 60: soybean phosphatidyl choline (PC) ratio, glycerosomes with maximum percentage entrapment efficiency (%EE) and zeta potential (ZP) and minimum vesicle size (VS) and polydispersity index (PDI) were to be obtained. An optimal augmented glycerosomal formula (OAG) that contained 10 mg VCZ, 150 mg PC, and 3 mL glycerol, comprising 2.5: and 0.92:1 ratios of the latter two independent variables, was proposed via numerical optimization. OAG exhibited high %EE and ZP values and acceptable low values for VS and PDI (84.3 ± 2.0 %, −38.8 ± 1.8 mV, 191.0 ± 1.1 nm, and 0.192 ± 0.01, respectively). Extensive in vitro testing of OAG revealed the entrapment of VCZ within OAG, biphasic in vitro release profile, stability for up to 3 months at 2–8 °C and spherical morphology of OAG with VS like that obtained via zetasizer. OAG demonstrated higher permeated amounts of VCZ and flux values than VCZ suspension, leading to an enhancement ratio of 2.56 in the ex vivo permeation study. The deeper penetration ability of OAG demonstrated by Confocal Laser Scanning Microscopy and its superior in vitro antifungal activity confirmed the validity of the ex vivo study. Also, the histopathological study confirmed the safety of OAG for topical use, suggesting that VCZ OAG was a promising topical antimycotic formula.
在本研究中,采用薄膜水合法,根据 23 个因子设计,优化了用于局部治疗耳霉菌病的伏立康唑(VCZ)增效甘油三酯体。通过优化甘油体积、柠檬烯60:大豆磷脂酰胆碱(PC)的比例,从而获得夹带效率(%EE)和ZP(ZETA电位)最大、囊泡尺寸(VS)和多分散指数(PDI)最小的甘油囊体。通过数值优化,提出了一种最佳增强甘油囊配方(OAG),其中包含 10 毫克 VCZ、150 毫克 PC 和 3 毫升甘油,后两个自变量的比例分别为 2.5:1 和 0.92:1。OAG 显示出较高的 %EE 和 ZP 值,以及可接受的较低 VS 和 PDI 值(分别为 84.3 ± 2.0 %、-38.8 ± 1.8 mV、191.0 ± 1.1 nm 和 0.192 ± 0.01)。对 OAG 进行的大量体外测试表明,VCZ 在 OAG 中被包裹,体外释放曲线呈双相,在 2 2-8 °C 下可稳定 3 个月,OAG 呈球形,其 VS 与通过zetasizer 获得的相似。与 VCZ 悬浮液相比,OAG 表现出更高的 VCZ 渗透量和通量值,因此在体内外渗透研究中的增强比为 2.56。共焦激光扫描显微镜显示了 OAG 的深层渗透能力,其优异的体外抗真菌活性也证实了体内外研究的有效性。此外,组织病理学研究也证实了 OAG 局部使用的安全性,表明 VCZ OAG 是一种很有前途的局部抗真菌配方。
{"title":"Augmented glycerosomes as a promising approach against fungal ear infection: Optimization and microbiological, ex vivo and in vivo assessments","authors":"Sadek Ahmed ,&nbsp;Heba Attia ,&nbsp;Osama Saher ,&nbsp;Abdurrahman M. Fahmy","doi":"10.1016/j.ijpx.2024.100295","DOIUrl":"10.1016/j.ijpx.2024.100295","url":null,"abstract":"<div><div>In the current study, voriconazole (VCZ) augmented glycerosomes were optimized for topical otomycosis management according to a 2<sup>3</sup> factorial design, employing a thin film hydration method. By optimizing Glycerol volume, limonene: VCZ ratio and Span® 60: soybean phosphatidyl choline (PC) ratio, glycerosomes with maximum percentage entrapment efficiency (%EE) and zeta potential (ZP) and minimum vesicle size (VS) and polydispersity index (PDI) were to be obtained. An optimal augmented glycerosomal formula (OAG) that contained 10 mg VCZ, 150 mg PC, and 3 mL glycerol, comprising 2.5: and 0.92:1 ratios of the latter two independent variables, was proposed via numerical optimization. OAG exhibited high %EE and ZP values and acceptable low values for VS and PDI (84.3 ± 2.0 %, −38.8 ± 1.8 mV, 191.0 ± 1.1 nm, and 0.192 ± 0.01, respectively). Extensive in <em>vitro</em> testing of OAG revealed the entrapment of VCZ within OAG, biphasic in <em>vitro</em> release profile, stability for up to 3 months at 2–8 °C and spherical morphology of OAG with VS like that obtained via zetasizer. OAG demonstrated higher permeated amounts of VCZ and flux values than VCZ suspension, leading to an enhancement ratio of 2.56 in the <em>ex vivo</em> permeation study. The deeper penetration ability of OAG demonstrated by Confocal Laser Scanning Microscopy and its superior in <em>vitro</em> antifungal activity confirmed the validity of the <em>ex vivo</em> study. Also, the histopathological study confirmed the safety of OAG for topical use, suggesting that VCZ OAG was a promising topical antimycotic formula.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100295"},"PeriodicalIF":5.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preservative-free electrospun nanofibrous inserts for sustained delivery of ceftazidime; design, characterization and pharmacokinetic investigation in rabbit's eye 用于头孢他啶持续给药的不含防腐剂的电纺纳米纤维插入物;设计、表征和兔眼药代动力学研究
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-22 DOI: 10.1016/j.ijpx.2024.100297
Shiva Taghe , Shahla Mirzaeei
Ocular drug delivery presents significant challenges, attributed to the various anatomical and physiological barriers, as well as the limitations associated with conventional ocular formulations including low bioavailability, necessitating frequent dosing. The objective of the essay was to design sustained release nanofibrous inserts loaded with ceftazidime (CAZ), an antibiotic effective against gram-negative and gram-positive microorganisms, for the treatment of ocular infections. These nanofibers were fabricated using the electrospinning technique, employing biodegradable polymers such as polyvinyl alcohol (PVA), polycaprolactone (PCL) and Eudragit® (EUD). The nanofibrous inserts exhibited adequate mechanical strength for ocular use with an average diameter < 250 nm. In the initial 12-h period, a burst drug release was observed, followed by a controlled release for 120 h. Cell viability test confirmed the non-toxicity and safety of the nanofibers. The in vivo study demonstrated that the inserts sustain a drug concentration exceeding the minimum inhibitory concentration (MIC) of Pseudomonas aeruginosa and Staphylococcus aureus for 4 and 5 days, respectively. The AUC0120 for CAZ-PVA-PCL was reported 11,882.81 ± 80.5 μg·h/ml and for CAZ-PVA-EUD was 9649.39 ± 86.84 μg·h/ml. The nanofibrous inserts' extended drug release maintains effective antimicrobial concentrations, avoids the fluctuations of eye drops, and, by being preservative-free, eliminates cytotoxicity.
由于各种解剖和生理障碍,以及传统眼用制剂的局限性(包括生物利用度低,需要频繁给药等),眼用给药面临着巨大挑战。本文的目的是设计载入头孢他啶(CAZ)的缓释纳米纤维插件,用于治疗眼部感染,头孢他啶是一种抗生素,对革兰氏阴性和革兰氏阳性微生物有效。这些纳米纤维是利用聚乙烯醇(PVA)、聚己内酯(PCL)和 Eudragit® (EUD)等生物可降解聚合物,通过电纺丝技术制成的。纳米纤维插入物的平均直径为 250 nm,具有足够的机械强度,适合眼部使用。细胞活力测试证实了纳米纤维的无毒性和安全性。体内研究表明,纳米纤维插入物可使药物浓度超过铜绿假单胞菌和金黄色葡萄球菌的最低抑菌浓度(MIC),分别可维持 4 天和 5 天。CAZ-PVA-PCL 的 AUC0-120 为 11,882.81 ± 80.5 μg-h/ml,CAZ-PVA-EUD 的 AUC0-120 为 9649.39 ± 86.84 μg-h/ml。纳米纤维插件的药物释放时间延长,可保持有效的抗菌浓度,避免眼药水的波动,而且不含防腐剂,消除了细胞毒性。
{"title":"Preservative-free electrospun nanofibrous inserts for sustained delivery of ceftazidime; design, characterization and pharmacokinetic investigation in rabbit's eye","authors":"Shiva Taghe ,&nbsp;Shahla Mirzaeei","doi":"10.1016/j.ijpx.2024.100297","DOIUrl":"10.1016/j.ijpx.2024.100297","url":null,"abstract":"<div><div>Ocular drug delivery presents significant challenges, attributed to the various anatomical and physiological barriers, as well as the limitations associated with conventional ocular formulations including low bioavailability, necessitating frequent dosing. The objective of the essay was to design sustained release nanofibrous inserts loaded with ceftazidime (CAZ), an antibiotic effective against gram-negative and gram-positive microorganisms, for the treatment of ocular infections. These nanofibers were fabricated using the electrospinning technique, employing biodegradable polymers such as polyvinyl alcohol (PVA), polycaprolactone (PCL) and Eudragit® (EUD). The nanofibrous inserts exhibited adequate mechanical strength for ocular use with an average diameter &lt; 250 nm. In the initial 12-h period, a burst drug release was observed, followed by a controlled release for 120 h. Cell viability test confirmed the non-toxicity and safety of the nanofibers. The <em>in vivo</em> study demonstrated that the inserts sustain a drug concentration exceeding the minimum inhibitory concentration (MIC) of <em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em> for 4 and 5 days, respectively. The AUC<sub>0</sub><sub>–</sub><sub>120</sub> for CAZ-PVA-PCL was reported 11,882.81 ± 80.5 μg·h/ml and for CAZ-PVA-EUD was 9649.39 ± 86.84 μg·h/ml. The nanofibrous inserts' extended drug release maintains effective antimicrobial concentrations, avoids the fluctuations of eye drops, and, by being preservative-free, eliminates cytotoxicity.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100297"},"PeriodicalIF":5.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of an innovative nanovehicle to enhance brain permeability of a novel 5-HT6 receptor antagonist 设计创新型纳米载体,提高新型 5-HT6 受体拮抗剂的脑渗透性
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-21 DOI: 10.1016/j.ijpx.2024.100296
María Javiera Alvarez-Figueroa , Francisco Nuñez-Navarro , Gonzalo Recabarren-Gajardo , José Vicente González-Aramundiz
An innovative nanovehicle based on lipid nanocapsules (LNC) was designed to facilitate the passage of a new 5-HT6 receptor antagonist, namely PUC-10, through the blood-brain barrier. PUC-10 is a new synthetic N-arylsulfonylindole that has demonstrated potent 5-HT6 receptor antagonist activity, but it exhibits poor solubility in water, which indicates limited absorption. The lipid nanocapsules designed had a nanometric size (53 nm), a monomodal distribution (PI<0.2), a negative Z potential (−17 ± 7 mV) and allowed efficient PUC-10 encapsulation (74 %). Furthermore, the LNC demonstrated to be stable for at least 4 weeks at 4 °C (storage conditions), for at least 4 h in DMEM at pH 7.4, and for 18 h in water with 5 % DMSO, with both latter conditions maintained at 37 °C. They also demonstrated that cell viability was not affected at the different concentrations studied. Finally, in vitro studies that simulate the blood brain barrier (PAMPA-BBB) demonstrated that the nanoencapsulation of PUC-10 promoted their penetration through the blood-brain barrier, with a calculated permeability of 1.3 × 10−8 cm/s, compared to the null permeability exhibited by non-nanoencapsulated PUC-10.
我们设计了一种基于脂质纳米囊(LNC)的创新纳米载体,以促进新型 5-HT6 受体拮抗剂 PUC-10 通过血脑屏障。PUC-10 是一种新合成的 N-芳基磺酰基吲哚类药物,具有强效的 5-HT6 受体拮抗剂活性,但在水中的溶解度较低,这表明其吸收能力有限。所设计的脂质纳米胶囊具有纳米级尺寸(53 纳米)、单模分布(PI<0.2)、负 Z 电位(-17 ± 7 mV),可有效封装 PUC-10(74%)。此外,LNC 在 4 °C(储存条件)下至少稳定 4 周,在 pH 值为 7.4 的 DMEM 中至少稳定 4 小时,在含有 5 % DMSO 的水中稳定 18 小时,后两种条件均保持在 37 °C。他们还证明,在研究的不同浓度下,细胞活力均未受到影响。最后,模拟血脑屏障(PAMPA-BBB)的体外研究表明,PUC-10 的纳米包囊促进了其在血脑屏障中的渗透,计算出的渗透率为 1.3 × 10-8 厘米/秒,而非纳米包囊的 PUC-10 的渗透率为零。
{"title":"Design of an innovative nanovehicle to enhance brain permeability of a novel 5-HT6 receptor antagonist","authors":"María Javiera Alvarez-Figueroa ,&nbsp;Francisco Nuñez-Navarro ,&nbsp;Gonzalo Recabarren-Gajardo ,&nbsp;José Vicente González-Aramundiz","doi":"10.1016/j.ijpx.2024.100296","DOIUrl":"10.1016/j.ijpx.2024.100296","url":null,"abstract":"<div><div>An innovative nanovehicle based on lipid nanocapsules (LNC) was designed to facilitate the passage of a new 5-HT<sub>6</sub> receptor antagonist, namely PUC-10, through the blood-brain barrier. PUC-10 is a new synthetic <em>N</em>-arylsulfonylindole that has demonstrated potent 5-HT<sub>6</sub> receptor antagonist activity, but it exhibits poor solubility in water, which indicates limited absorption. The lipid nanocapsules designed had a nanometric size (53 nm), a monomodal distribution (PI&lt;0.2), a negative Z potential (−17 ± 7 mV) and allowed efficient PUC-10 encapsulation (74 %). Furthermore, the LNC demonstrated to be stable for at least 4 weeks at 4 °C (storage conditions), for at least 4 h in DMEM at pH 7.4, and for 18 h in water with 5 % DMSO, with both latter conditions maintained at 37 °C. They also demonstrated that cell viability was not affected at the different concentrations studied. Finally, <em>in vitro</em> studies that simulate the blood brain barrier (PAMPA-BBB) demonstrated that the nanoencapsulation of PUC-10 promoted their penetration through the blood-brain barrier, with a calculated permeability of 1.3 × 10<sup>−8</sup> cm/s, compared to the null permeability exhibited by non-nanoencapsulated PUC-10.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100296"},"PeriodicalIF":5.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of cancer-associated fibroblasts-targeting polymeric nanoparticles loaded with 8-O-methylfusarubin for breast cancer treatment 开发癌症相关成纤维细胞靶向聚合物纳米颗粒,载入 8-O-甲基扶桑黄素用于乳腺癌治疗
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-17 DOI: 10.1016/j.ijpx.2024.100294
Kamonlatth Rodponthukwaji , Suyanee Thongchot , Suttikiat Deureh , Tanva Thongkleang , Mattika Thaweesuvannasak , Kornrawee Srichan , Chatchawan Srisawat , Peti Thuwajit , Kytai T. Nguyen , Kwanruthai Tadpetch , Chanitra Thuwajit , Primana Punnakitikashem
Cancer-associated fibroblasts (CAFs) are abundant stromal cells residing in a tumor microenvironment (TME) which are associated with the progression of tumor. Herein, we developed novel CAFs-targeting polymeric nanoparticles encapsulating a synthetic 8-O-methylfusarubin (OMF) compound (OMF@NPs-anti-FAP). Anti-FAP/fibroblast activation protein antibody was employed as a CAFs-targeting ligand. The physicochemical properties of the synthesized nanomaterials were firstly investigated with various techniques. The cytocompatibility of polymeric nanoparticles (NPs) was elicited through cell viability of CAFs and human breast epithelial cells, MCF-10A. Additionally, the anti-FAP-conjugated NPs displayed different degrees of cellular internalization regarding the FAP expression level on the CAFs' surface. However, CAFs exposed to NPs containing OMF demonstrated significant cell death which were associated with the apoptotic pathway as confirmed by caspase-3/7 activity. Upon OMF@NPs-anti-FAP treatment, an enhanced toxicity was clearly observed in 3D spheroid models. High FAP-expressed PC-B-132CAFs demonstrated a high percentage of cell death compared to other cells with a low level of FAP expression analyzed by flow cytometry (e.g. MCF-10A, HDFa, and PC-B-142CAFs). This result emphasized the importance of anti-FAP antibody as a targeting ligand. These findings suggest that the fabricated nanosystem of OMF-loaded polymeric NPs with CAFs' high specificity holds a potential NP-based platform for improvement in breast cancer treatment.
癌症相关成纤维细胞(CAFs)是肿瘤微环境(TME)中大量存在的基质细胞,与肿瘤的进展有关。在此,我们开发了新型的CAFs靶向聚合物纳米颗粒,其中封装了一种合成的8-O-甲基木糖醇(OMF)化合物(OMF@NPs-anti-FAP)。抗 FAP/成纤维细胞活化蛋白抗体被用作 CAFs 靶向配体。首先利用各种技术研究了合成纳米材料的理化性质。通过测定 CAFs 和人乳腺上皮细胞 MCF-10A 的细胞活力,研究了聚合物纳米颗粒(NPs)的细胞相容性。此外,根据 CAFs 表面 FAP 的表达水平,抗 FAP 结合物 NPs 显示出不同程度的细胞内化。然而,暴露于含有 OMF 的 NPs 的 CAF 表现出明显的细胞死亡,这与细胞凋亡途径有关,并通过 caspase-3/7 活性得到证实。经 OMF@NPs-anti-FAP 处理后,在三维球状模型中明显观察到毒性增强。与流式细胞术分析的其他FAP表达水平较低的细胞(如MCF-10A、HDFa和PC-B-142CAFs)相比,FAP表达水平较高的PC-B-132CAFs表现出较高的细胞死亡比例。这一结果强调了抗 FAP 抗体作为靶向配体的重要性。这些研究结果表明,利用 CAFs 的高特异性制造出的负载 OMF 的聚合物 NP 纳米系统是一种潜在的基于 NP 的平台,可改善乳腺癌的治疗。
{"title":"Development of cancer-associated fibroblasts-targeting polymeric nanoparticles loaded with 8-O-methylfusarubin for breast cancer treatment","authors":"Kamonlatth Rodponthukwaji ,&nbsp;Suyanee Thongchot ,&nbsp;Suttikiat Deureh ,&nbsp;Tanva Thongkleang ,&nbsp;Mattika Thaweesuvannasak ,&nbsp;Kornrawee Srichan ,&nbsp;Chatchawan Srisawat ,&nbsp;Peti Thuwajit ,&nbsp;Kytai T. Nguyen ,&nbsp;Kwanruthai Tadpetch ,&nbsp;Chanitra Thuwajit ,&nbsp;Primana Punnakitikashem","doi":"10.1016/j.ijpx.2024.100294","DOIUrl":"10.1016/j.ijpx.2024.100294","url":null,"abstract":"<div><div>Cancer-associated fibroblasts (CAFs) are abundant stromal cells residing in a tumor microenvironment (TME) which are associated with the progression of tumor. Herein, we developed novel CAFs-targeting polymeric nanoparticles encapsulating a synthetic 8-<em>O</em>-methylfusarubin (OMF) compound (OMF@NPs-anti-FAP). Anti-FAP/fibroblast activation protein antibody was employed as a CAFs-targeting ligand. The physicochemical properties of the synthesized nanomaterials were firstly investigated with various techniques. The cytocompatibility of polymeric nanoparticles (NPs) was elicited through cell viability of CAFs and human breast epithelial cells, MCF-10A. Additionally, the anti-FAP-conjugated NPs displayed different degrees of cellular internalization regarding the FAP expression level on the CAFs' surface. However, CAFs exposed to NPs containing OMF demonstrated significant cell death which were associated with the apoptotic pathway as confirmed by caspase-3/7 activity. Upon OMF@NPs-anti-FAP treatment, an enhanced toxicity was clearly observed in 3D spheroid models. High FAP-expressed PC-B-132CAFs demonstrated a high percentage of cell death compared to other cells with a low level of FAP expression analyzed by flow cytometry (e.g. MCF-10A, HDFa, and PC-B-142CAFs). This result emphasized the importance of anti-FAP antibody as a targeting ligand. These findings suggest that the fabricated nanosystem of OMF-loaded polymeric NPs with CAFs' high specificity holds a potential NP-based platform for improvement in breast cancer treatment.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100294"},"PeriodicalIF":5.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of wound dressing porosity and exudate viscosity on the exudate absorption: In vitro and in silico tests with 3D printed hydrogels 伤口敷料孔隙率和渗出物粘度对渗出物吸收的影响:三维打印水凝胶的体外和体内测试
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1016/j.ijpx.2024.100288
Alejandro Seijo-Rabina , Santiago Paramés-Estevez , Angel Concheiro , Alberto Pérez-Muñuzuri , Carmen Alvarez-Lorenzo
Exudate absorption is a key parameter for proper wound dressing performance. Unlike standardized tests that consider exudate viscosity close to that of water, patients' exudates vary greatly in composition and, therefore, viscosity. This work aimed to investigate the effects of exudate viscosity and pore size of hydrogel-like dressings on the exudate absorption rate to establish rational criteria for the design of dressings that can meet the personalized needs of wound treatment. Computer-aided design (CAD) was used for Digital Light Processing (DLP) 3D printing of hydrogels with 0%, 30% and 60% porosity. The hydrogels were characterized in detail, and the absorption of two simulated exudate fluids (SEFs) was video-recorded. The same CAD files were used to develop in silico models to simulate exudate uptake rate. Both in vitro data and in silico modeling revealed that low-viscosity SEF penetrates faster through relatively small hydrogel pores (approx. 400 μm) compared to larger pores (approx. 1100 μm) due to capillary forces. However, in vitro vertical uptake took longer than when simulated using CAD design due to lateral fluid absorption through the pore walls in the hydrogel bulk. Distortions of hydrogel channels (micro-CT images) and lateral fluid absorption should be both considered for in silico simulation of SEF penetration. Overall, the results evidenced that porous hydrogel dressings allow rapid penetration (within a few seconds) and hosting of exudates, especially for pore size <1 mm. This information may be useful for design criteria of wound dressings with adequate fluid handling and drug release rate.
渗出物吸收是伤口敷料性能是否正常的一个关键参数。标准化测试认为渗出液的粘度接近于水的粘度,但患者的渗出液成分差异很大,因此粘度也不尽相同。这项工作旨在研究渗出液粘度和水凝胶类敷料的孔径对渗出液吸收率的影响,从而为敷料的设计建立合理的标准,满足伤口治疗的个性化需求。计算机辅助设计(CAD)用于数字光处理(DLP)三维打印孔隙率为 0%、30% 和 60% 的水凝胶。对水凝胶进行了详细表征,并对两种模拟渗出液(SEF)的吸收情况进行了视频记录。同样的 CAD 文件被用于开发模拟渗出液吸收率的硅学模型。体外数据和硅学模型均显示,由于毛细力的作用,低粘度 SEF 穿过相对较小的水凝胶孔隙(约 400 μm)的速度比穿过较大孔隙(约 1100 μm)的速度快。不过,体外垂直吸收所需的时间比使用 CAD 设计模拟的时间要长,这是因为液体通过水凝胶体中的孔壁被横向吸收。在对 SEF 的渗透进行硅模拟时,应同时考虑水凝胶通道的扭曲(显微 CT 图像)和横向流体吸收。总之,研究结果表明,多孔水凝胶敷料可以快速渗透(几秒钟内)并容纳渗出液,尤其是在孔径为 1 毫米的情况下。这些信息可能有助于制定具有足够液体处理能力和药物释放率的伤口敷料的设计标准。
{"title":"Effect of wound dressing porosity and exudate viscosity on the exudate absorption: In vitro and in silico tests with 3D printed hydrogels","authors":"Alejandro Seijo-Rabina ,&nbsp;Santiago Paramés-Estevez ,&nbsp;Angel Concheiro ,&nbsp;Alberto Pérez-Muñuzuri ,&nbsp;Carmen Alvarez-Lorenzo","doi":"10.1016/j.ijpx.2024.100288","DOIUrl":"10.1016/j.ijpx.2024.100288","url":null,"abstract":"<div><div>Exudate absorption is a key parameter for proper wound dressing performance. Unlike standardized tests that consider exudate viscosity close to that of water, patients' exudates vary greatly in composition and, therefore, viscosity. This work aimed to investigate the effects of exudate viscosity and pore size of hydrogel-like dressings on the exudate absorption rate to establish rational criteria for the design of dressings that can meet the personalized needs of wound treatment. Computer-aided design (CAD) was used for Digital Light Processing (DLP) 3D printing of hydrogels with 0%, 30% and 60% porosity. The hydrogels were characterized in detail, and the absorption of two simulated exudate fluids (SEFs) was video-recorded. The same CAD files were used to develop <em>in silico</em> models to simulate exudate uptake rate. Both <em>in vitro</em> data and <em>in silico</em> modeling revealed that low-viscosity SEF penetrates faster through relatively small hydrogel pores (approx. 400 μm) compared to larger pores (approx. 1100 μm) due to capillary forces. However, <em>in vitro</em> vertical uptake took longer than when simulated using CAD design due to lateral fluid absorption through the pore walls in the hydrogel bulk. Distortions of hydrogel channels (micro-CT images) and lateral fluid absorption should be both considered for <em>in silico</em> simulation of SEF penetration. Overall, the results evidenced that porous hydrogel dressings allow rapid penetration (within a few seconds) and hosting of exudates, especially for pore size &lt;1 mm. This information may be useful for design criteria of wound dressings with adequate fluid handling and drug release rate.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100288"},"PeriodicalIF":5.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ocular mucoadhesive and biodegradable spanlastics loaded cationic spongy insert for enhancing and sustaining the anti-inflammatory effect of prednisolone Na phosphate; Preparation, I-optimal optimization, and In-vivo evaluation 用于增强和维持泼尼松龙磷酸钠抗炎效果的眼部粘液粘附性和可生物降解的含阳离子海绵插件;制备、I-优化和体内评估
IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1016/j.ijpx.2024.100293
Mayada Said , Khaled M. Ali , Munerah M. Alfadhel , Obaid Afzal , Basmah Nasser Aldosari , Maha Alsunbul , Rawan Bafail , Randa Mohammed Zaki
This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of −37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.
本研究旨在配制并从统计学角度优化磷酸泼尼松龙钠(PRED)海绵插件(SPLs-SI),以可控方式增强和维持其抗炎效果。使用 Design-Expert® 软件进行了 I-optimal 优化。配方变量包括超声时间、Span 60:EA 比率和边缘活化剂类型(吐温 80 或 PVA),而包封效率(EE%)、囊泡大小(VS)和 Zeta 电位(ZP)则被设定为因变量。这样就得出了一个最佳的跨塑料(SPLs)配方,其理想度为 0.919。该配方的 Span60 与 Tween80 的比例为 6:1,超声时间为 9.5 分钟。除了老化对其特性的影响外,还对其 EE%、VS、ZP、与药物溶液相比的释放行为进行了评估。它的 EE% 为 87.56,VS 为 152.2 nm,ZP 为 -37.38 Mv。与药物溶液相比,它显示了 PRED 的持续释放行为,并在 30 天内具有良好的稳定性。经优化的 PRED SPLs 制剂的 TEM 图像显示为球形非聚集纳米颗粒。然后,将其装入壳聚糖海绵插件中,对其外观、pH 值和粘附性进行了评估。结果表明,纳米颗粒具有良好的粘附性,在安全眼区的 pH 值也较高。傅立叶变换红外光谱(FTIR)、二沉积扫描光谱(DSC)和 X 射线衍射光谱(XRD)显示,PRED 成功地被包裹在 SPLs 囊泡中。随后对其进行了体内研究,结果表明,与市售的 PRED 溶液相比,每天使用一次的 SPLs 能够持续增强 PRED 的抗炎效果。这种海绵状插入物有望成为一种用于眼部递送 PRED 的载体。
{"title":"Ocular mucoadhesive and biodegradable spanlastics loaded cationic spongy insert for enhancing and sustaining the anti-inflammatory effect of prednisolone Na phosphate; Preparation, I-optimal optimization, and In-vivo evaluation","authors":"Mayada Said ,&nbsp;Khaled M. Ali ,&nbsp;Munerah M. Alfadhel ,&nbsp;Obaid Afzal ,&nbsp;Basmah Nasser Aldosari ,&nbsp;Maha Alsunbul ,&nbsp;Rawan Bafail ,&nbsp;Randa Mohammed Zaki","doi":"10.1016/j.ijpx.2024.100293","DOIUrl":"10.1016/j.ijpx.2024.100293","url":null,"abstract":"<div><div>This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of −37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100293"},"PeriodicalIF":5.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Pharmaceutics: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1