Pub Date : 2024-11-14DOI: 10.1016/j.ijpx.2024.100302
Xing Liu, Wenwen Shen
In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.
{"title":"Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer","authors":"Xing Liu, Wenwen Shen","doi":"10.1016/j.ijpx.2024.100302","DOIUrl":"10.1016/j.ijpx.2024.100302","url":null,"abstract":"<div><div>In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100302"},"PeriodicalIF":5.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.ijpx.2024.100300
Haiwei Bao, Lulu Dai, Huiyang Wang, Tianan Jiang
Acute rejection (AR) remains a pivotal complication and leading cause of mortality within the first year following heart transplantation (HT). In this study, we assessed the impact of ultrasound-targeted microbubbles loaded with sirolimus (SIR-MBs) on AR in a rat HT model and delved into the underlying mechanisms. We established a rat abdominal ectopic HT model, which was stratified into three groups receiveing the PBS, SIR-MBs + ultrasound-targeted microbubble destruction (UTMD), and sirolimus, respectively. The protective effects of each treatments on survival rate, inflammatory response, autophagy and TGF-β1-Smad signaling pathway-related proteins were evaluted. Additionally, rescue experiment was performed via adding the autophagy inhibitor or TGF-β1 agonist in combination therapy. UTMD combined SIR-MBs mediated 15-fold higher local drug concentration compared to direct sirolimus administration. The infiltration of inflammatory cells in the transplanted hearts indicated that SIR-MBs combined with UTMD were effective in mitigating the inflammatory response, achieving levels significantly lower than those observed in the sirolimus group. Furthermore, after SIR-MBs combined with UTMD treatment, the expression levels of TGF-β1-Smad signaling pathway-related proteins in heart tissues also showed a significant decrease compared to the model control group. Conversely, the expressions of autophagy proteins LC3-II, Beclin-1 and β-arrestin showed an up-regulated trend. Rescue experiments also revealed that the enhancement in survival trends was markedly suppressed following the administration of CsA or SRI-011381, respectively. Collectively, our findings suggest that SIR-MBs combined with UTMD augment the local treatment efficacy for AR in rat HT models by inhibiting the TGF-β1-Smad signaling pathway, promoting autophagy, and alleviating inflammation.
{"title":"Ultrasound-targeted sirolimus-loaded microbubbles improves acute rejection of heart transplantation in rats by inhibiting TGF-β1-Smad signaling pathway, promoting autophagy and reducing inflammation","authors":"Haiwei Bao, Lulu Dai, Huiyang Wang, Tianan Jiang","doi":"10.1016/j.ijpx.2024.100300","DOIUrl":"10.1016/j.ijpx.2024.100300","url":null,"abstract":"<div><div>Acute rejection (AR) remains a pivotal complication and leading cause of mortality within the first year following heart transplantation (HT). In this study, we assessed the impact of ultrasound-targeted microbubbles loaded with sirolimus (SIR-MBs) on AR in a rat HT model and delved into the underlying mechanisms. We established a rat abdominal ectopic HT model, which was stratified into three groups receiveing the PBS, SIR-MBs + ultrasound-targeted microbubble destruction (UTMD), and sirolimus, respectively. The protective effects of each treatments on survival rate, inflammatory response, autophagy and TGF-β1-Smad signaling pathway-related proteins were evaluted. Additionally, rescue experiment was performed <em>via</em> adding the autophagy inhibitor or TGF-β1 agonist in combination therapy. UTMD combined SIR-MBs mediated 15-fold higher local drug concentration compared to direct sirolimus administration. The infiltration of inflammatory cells in the transplanted hearts indicated that SIR-MBs combined with UTMD were effective in mitigating the inflammatory response, achieving levels significantly lower than those observed in the sirolimus group. Furthermore, after SIR-MBs combined with UTMD treatment, the expression levels of TGF-β1-Smad signaling pathway-related proteins in heart tissues also showed a significant decrease compared to the model control group. Conversely, the expressions of autophagy proteins LC3-II, Beclin-1 and β-arrestin showed an up-regulated trend. Rescue experiments also revealed that the enhancement in survival trends was markedly suppressed following the administration of CsA or SRI-011381, respectively. Collectively, our findings suggest that SIR-MBs combined with UTMD augment the local treatment efficacy for AR in rat HT models by inhibiting the TGF-β1-Smad signaling pathway, promoting autophagy, and alleviating inflammation.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100300"},"PeriodicalIF":5.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.ijpx.2024.100298
Mohammad Salehian , Jonathan Moores , Jonathan Goldie , Isra' Ibrahim , Carlota Mendez Torrecillas , Ishwari Wale , Faisal Abbas , Natalie Maclean , John Robertson , Alastair Florence , Daniel Markl
This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often , utilising raw material properties to reduce time and material resources on preparing and characterising blends.
{"title":"A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends","authors":"Mohammad Salehian , Jonathan Moores , Jonathan Goldie , Isra' Ibrahim , Carlota Mendez Torrecillas , Ishwari Wale , Faisal Abbas , Natalie Maclean , John Robertson , Alastair Florence , Daniel Markl","doi":"10.1016/j.ijpx.2024.100298","DOIUrl":"10.1016/j.ijpx.2024.100298","url":null,"abstract":"<div><div>This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often <span><math><msup><mi>R</mi><mn>2</mn></msup><mo>></mo><mn>0.8</mn></math></span>, utilising raw material properties to reduce time and material resources on preparing and characterising blends.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100298"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.ijpx.2024.100299
Lee Roy Oldfield , Aaron Felix Christofer Mentrup , Stefan Klinken-Uth , Tobias Auel , Anne Seidlitz
MUPS (multiple unit particle systems) are oral dosage forms consisting of small particles which are filled into capsules or compressed into tablets. Compared to monolithic sustained-release tablets, MUPS tablets rapidly disintegrate inside the stomach releasing the contained small particles, which can be emptied from the stomach independent of housekeeping waves. Control of release can be achieved by adapting the particle composition. Despite the advantages of MUPS, only a limited number of preparations are available on the market. 3D printing could be a new advantageous method to produce MUPS tablets compared to the conventional production via tableting. Due to the increasing research interest in personalised medicine, especially regarding dose adjustments, this flexible production approach could be a promising concept. Therefore, this work proposes a concept for printing MUPS tablets using a dual extrusion fused filament fabrication 3D printer. The general idea is that the two print heads can be used independently to print a water-soluble tablet shell with the first print head and incorporate functional particles into the tablet shell with a second print head using different materials for each step. In this study, a modular four-particle-layered tablet computer model containing 196 cylindrical particles with a diameter of 1.4 mm, a height of 1.0 mm and a total tablet size of 22.6 × 8.5 × 6.0 mm is proposed. A first proof-of-concept study with drug-free commercially available polylactic acid filament for the particles and polyvinyl alcohol filament for the tablet shell revealed critical parameters (such as filament retraction, z-offset and water content of filaments) for the successful printing of the proposed computer model. In addition, the successfully printed model 3D-MUPS tablets and incorporated particles were characterised, revealing a reproducible manufacturing process. The printed model particles had a diameter of 1.27 ± 0.04 mm and a height of 1.05 ± 0.01 mm. One of the challenges of the new approach was to avoid particle agglomeration because of remelting processes during the printing with two print heads. 57.54 ± 18.59 % of the 196 printed particles were present as single particles. Finally, the transferability and suitability with a model API-loaded (paracetamol) hydroxypropyl methylcellulose filament for the particles and a polyvinyl alcohol tablet shell was successfully tested. On average, 80 % of paracetamol was released within 3 h (2–4 h). Overall, this work shows an innovative new manufacturing method for dose-adjustable personalised MUPS tablets but also considers new challenges arising from the different manufacturing processes.
{"title":"From design to 3D printing: A proof-of-concept study for multiple unit particle systems (MUPS) printed by dual extrusion fused filament fabrication","authors":"Lee Roy Oldfield , Aaron Felix Christofer Mentrup , Stefan Klinken-Uth , Tobias Auel , Anne Seidlitz","doi":"10.1016/j.ijpx.2024.100299","DOIUrl":"10.1016/j.ijpx.2024.100299","url":null,"abstract":"<div><div>MUPS (multiple unit particle systems) are oral dosage forms consisting of small particles which are filled into capsules or compressed into tablets. Compared to monolithic sustained-release tablets, MUPS tablets rapidly disintegrate inside the stomach releasing the contained small particles, which can be emptied from the stomach independent of housekeeping waves. Control of release can be achieved by adapting the particle composition. Despite the advantages of MUPS, only a limited number of preparations are available on the market. 3D printing could be a new advantageous method to produce MUPS tablets compared to the conventional production via tableting. Due to the increasing research interest in personalised medicine, especially regarding dose adjustments, this flexible production approach could be a promising concept. Therefore, this work proposes a concept for printing MUPS tablets using a dual extrusion fused filament fabrication 3D printer. The general idea is that the two print heads can be used independently to print a water-soluble tablet shell with the first print head and incorporate functional particles into the tablet shell with a second print head using different materials for each step. In this study, a modular four-particle-layered tablet computer model containing 196 cylindrical particles with a diameter of 1.4 mm, a height of 1.0 mm and a total tablet size of 22.6 × 8.5 × 6.0 mm is proposed. A first proof-of-concept study with drug-free commercially available polylactic acid filament for the particles and polyvinyl alcohol filament for the tablet shell revealed critical parameters (such as filament retraction, z-offset and water content of filaments) for the successful printing of the proposed computer model. In addition, the successfully printed model 3D-MUPS tablets and incorporated particles were characterised, revealing a reproducible manufacturing process. The printed model particles had a diameter of 1.27 ± 0.04 mm and a height of 1.05 ± 0.01 mm. One of the challenges of the new approach was to avoid particle agglomeration because of remelting processes during the printing with two print heads. 57.54 ± 18.59 % of the 196 printed particles were present as single particles. Finally, the transferability and suitability with a model API-loaded (paracetamol) hydroxypropyl methylcellulose filament for the particles and a polyvinyl alcohol tablet shell was successfully tested. On average, 80 % of paracetamol was released within 3 h (2–4 h). Overall, this work shows an innovative new manufacturing method for dose-adjustable personalised MUPS tablets but also considers new challenges arising from the different manufacturing processes.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100299"},"PeriodicalIF":5.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.ijpx.2024.100295
Sadek Ahmed , Heba Attia , Osama Saher , Abdurrahman M. Fahmy
In the current study, voriconazole (VCZ) augmented glycerosomes were optimized for topical otomycosis management according to a 23 factorial design, employing a thin film hydration method. By optimizing Glycerol volume, limonene: VCZ ratio and Span® 60: soybean phosphatidyl choline (PC) ratio, glycerosomes with maximum percentage entrapment efficiency (%EE) and zeta potential (ZP) and minimum vesicle size (VS) and polydispersity index (PDI) were to be obtained. An optimal augmented glycerosomal formula (OAG) that contained 10 mg VCZ, 150 mg PC, and 3 mL glycerol, comprising 2.5: and 0.92:1 ratios of the latter two independent variables, was proposed via numerical optimization. OAG exhibited high %EE and ZP values and acceptable low values for VS and PDI (84.3 ± 2.0 %, −38.8 ± 1.8 mV, 191.0 ± 1.1 nm, and 0.192 ± 0.01, respectively). Extensive in vitro testing of OAG revealed the entrapment of VCZ within OAG, biphasic in vitro release profile, stability for up to 3 months at 2–8 °C and spherical morphology of OAG with VS like that obtained via zetasizer. OAG demonstrated higher permeated amounts of VCZ and flux values than VCZ suspension, leading to an enhancement ratio of 2.56 in the ex vivo permeation study. The deeper penetration ability of OAG demonstrated by Confocal Laser Scanning Microscopy and its superior in vitro antifungal activity confirmed the validity of the ex vivo study. Also, the histopathological study confirmed the safety of OAG for topical use, suggesting that VCZ OAG was a promising topical antimycotic formula.
{"title":"Augmented glycerosomes as a promising approach against fungal ear infection: Optimization and microbiological, ex vivo and in vivo assessments","authors":"Sadek Ahmed , Heba Attia , Osama Saher , Abdurrahman M. Fahmy","doi":"10.1016/j.ijpx.2024.100295","DOIUrl":"10.1016/j.ijpx.2024.100295","url":null,"abstract":"<div><div>In the current study, voriconazole (VCZ) augmented glycerosomes were optimized for topical otomycosis management according to a 2<sup>3</sup> factorial design, employing a thin film hydration method. By optimizing Glycerol volume, limonene: VCZ ratio and Span® 60: soybean phosphatidyl choline (PC) ratio, glycerosomes with maximum percentage entrapment efficiency (%EE) and zeta potential (ZP) and minimum vesicle size (VS) and polydispersity index (PDI) were to be obtained. An optimal augmented glycerosomal formula (OAG) that contained 10 mg VCZ, 150 mg PC, and 3 mL glycerol, comprising 2.5: and 0.92:1 ratios of the latter two independent variables, was proposed via numerical optimization. OAG exhibited high %EE and ZP values and acceptable low values for VS and PDI (84.3 ± 2.0 %, −38.8 ± 1.8 mV, 191.0 ± 1.1 nm, and 0.192 ± 0.01, respectively). Extensive in <em>vitro</em> testing of OAG revealed the entrapment of VCZ within OAG, biphasic in <em>vitro</em> release profile, stability for up to 3 months at 2–8 °C and spherical morphology of OAG with VS like that obtained via zetasizer. OAG demonstrated higher permeated amounts of VCZ and flux values than VCZ suspension, leading to an enhancement ratio of 2.56 in the <em>ex vivo</em> permeation study. The deeper penetration ability of OAG demonstrated by Confocal Laser Scanning Microscopy and its superior in <em>vitro</em> antifungal activity confirmed the validity of the <em>ex vivo</em> study. Also, the histopathological study confirmed the safety of OAG for topical use, suggesting that VCZ OAG was a promising topical antimycotic formula.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100295"},"PeriodicalIF":5.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.ijpx.2024.100297
Shiva Taghe , Shahla Mirzaeei
Ocular drug delivery presents significant challenges, attributed to the various anatomical and physiological barriers, as well as the limitations associated with conventional ocular formulations including low bioavailability, necessitating frequent dosing. The objective of the essay was to design sustained release nanofibrous inserts loaded with ceftazidime (CAZ), an antibiotic effective against gram-negative and gram-positive microorganisms, for the treatment of ocular infections. These nanofibers were fabricated using the electrospinning technique, employing biodegradable polymers such as polyvinyl alcohol (PVA), polycaprolactone (PCL) and Eudragit® (EUD). The nanofibrous inserts exhibited adequate mechanical strength for ocular use with an average diameter < 250 nm. In the initial 12-h period, a burst drug release was observed, followed by a controlled release for 120 h. Cell viability test confirmed the non-toxicity and safety of the nanofibers. The in vivo study demonstrated that the inserts sustain a drug concentration exceeding the minimum inhibitory concentration (MIC) of Pseudomonas aeruginosa and Staphylococcus aureus for 4 and 5 days, respectively. The AUC0–120 for CAZ-PVA-PCL was reported 11,882.81 ± 80.5 μg·h/ml and for CAZ-PVA-EUD was 9649.39 ± 86.84 μg·h/ml. The nanofibrous inserts' extended drug release maintains effective antimicrobial concentrations, avoids the fluctuations of eye drops, and, by being preservative-free, eliminates cytotoxicity.
{"title":"Preservative-free electrospun nanofibrous inserts for sustained delivery of ceftazidime; design, characterization and pharmacokinetic investigation in rabbit's eye","authors":"Shiva Taghe , Shahla Mirzaeei","doi":"10.1016/j.ijpx.2024.100297","DOIUrl":"10.1016/j.ijpx.2024.100297","url":null,"abstract":"<div><div>Ocular drug delivery presents significant challenges, attributed to the various anatomical and physiological barriers, as well as the limitations associated with conventional ocular formulations including low bioavailability, necessitating frequent dosing. The objective of the essay was to design sustained release nanofibrous inserts loaded with ceftazidime (CAZ), an antibiotic effective against gram-negative and gram-positive microorganisms, for the treatment of ocular infections. These nanofibers were fabricated using the electrospinning technique, employing biodegradable polymers such as polyvinyl alcohol (PVA), polycaprolactone (PCL) and Eudragit® (EUD). The nanofibrous inserts exhibited adequate mechanical strength for ocular use with an average diameter < 250 nm. In the initial 12-h period, a burst drug release was observed, followed by a controlled release for 120 h. Cell viability test confirmed the non-toxicity and safety of the nanofibers. The <em>in vivo</em> study demonstrated that the inserts sustain a drug concentration exceeding the minimum inhibitory concentration (MIC) of <em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em> for 4 and 5 days, respectively. The AUC<sub>0</sub><sub>–</sub><sub>120</sub> for CAZ-PVA-PCL was reported 11,882.81 ± 80.5 μg·h/ml and for CAZ-PVA-EUD was 9649.39 ± 86.84 μg·h/ml. The nanofibrous inserts' extended drug release maintains effective antimicrobial concentrations, avoids the fluctuations of eye drops, and, by being preservative-free, eliminates cytotoxicity.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100297"},"PeriodicalIF":5.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.ijpx.2024.100296
María Javiera Alvarez-Figueroa , Francisco Nuñez-Navarro , Gonzalo Recabarren-Gajardo , José Vicente González-Aramundiz
An innovative nanovehicle based on lipid nanocapsules (LNC) was designed to facilitate the passage of a new 5-HT6 receptor antagonist, namely PUC-10, through the blood-brain barrier. PUC-10 is a new synthetic N-arylsulfonylindole that has demonstrated potent 5-HT6 receptor antagonist activity, but it exhibits poor solubility in water, which indicates limited absorption. The lipid nanocapsules designed had a nanometric size (53 nm), a monomodal distribution (PI<0.2), a negative Z potential (−17 ± 7 mV) and allowed efficient PUC-10 encapsulation (74 %). Furthermore, the LNC demonstrated to be stable for at least 4 weeks at 4 °C (storage conditions), for at least 4 h in DMEM at pH 7.4, and for 18 h in water with 5 % DMSO, with both latter conditions maintained at 37 °C. They also demonstrated that cell viability was not affected at the different concentrations studied. Finally, in vitro studies that simulate the blood brain barrier (PAMPA-BBB) demonstrated that the nanoencapsulation of PUC-10 promoted their penetration through the blood-brain barrier, with a calculated permeability of 1.3 × 10−8 cm/s, compared to the null permeability exhibited by non-nanoencapsulated PUC-10.
{"title":"Design of an innovative nanovehicle to enhance brain permeability of a novel 5-HT6 receptor antagonist","authors":"María Javiera Alvarez-Figueroa , Francisco Nuñez-Navarro , Gonzalo Recabarren-Gajardo , José Vicente González-Aramundiz","doi":"10.1016/j.ijpx.2024.100296","DOIUrl":"10.1016/j.ijpx.2024.100296","url":null,"abstract":"<div><div>An innovative nanovehicle based on lipid nanocapsules (LNC) was designed to facilitate the passage of a new 5-HT<sub>6</sub> receptor antagonist, namely PUC-10, through the blood-brain barrier. PUC-10 is a new synthetic <em>N</em>-arylsulfonylindole that has demonstrated potent 5-HT<sub>6</sub> receptor antagonist activity, but it exhibits poor solubility in water, which indicates limited absorption. The lipid nanocapsules designed had a nanometric size (53 nm), a monomodal distribution (PI<0.2), a negative Z potential (−17 ± 7 mV) and allowed efficient PUC-10 encapsulation (74 %). Furthermore, the LNC demonstrated to be stable for at least 4 weeks at 4 °C (storage conditions), for at least 4 h in DMEM at pH 7.4, and for 18 h in water with 5 % DMSO, with both latter conditions maintained at 37 °C. They also demonstrated that cell viability was not affected at the different concentrations studied. Finally, <em>in vitro</em> studies that simulate the blood brain barrier (PAMPA-BBB) demonstrated that the nanoencapsulation of PUC-10 promoted their penetration through the blood-brain barrier, with a calculated permeability of 1.3 × 10<sup>−8</sup> cm/s, compared to the null permeability exhibited by non-nanoencapsulated PUC-10.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100296"},"PeriodicalIF":5.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer-associated fibroblasts (CAFs) are abundant stromal cells residing in a tumor microenvironment (TME) which are associated with the progression of tumor. Herein, we developed novel CAFs-targeting polymeric nanoparticles encapsulating a synthetic 8-O-methylfusarubin (OMF) compound (OMF@NPs-anti-FAP). Anti-FAP/fibroblast activation protein antibody was employed as a CAFs-targeting ligand. The physicochemical properties of the synthesized nanomaterials were firstly investigated with various techniques. The cytocompatibility of polymeric nanoparticles (NPs) was elicited through cell viability of CAFs and human breast epithelial cells, MCF-10A. Additionally, the anti-FAP-conjugated NPs displayed different degrees of cellular internalization regarding the FAP expression level on the CAFs' surface. However, CAFs exposed to NPs containing OMF demonstrated significant cell death which were associated with the apoptotic pathway as confirmed by caspase-3/7 activity. Upon OMF@NPs-anti-FAP treatment, an enhanced toxicity was clearly observed in 3D spheroid models. High FAP-expressed PC-B-132CAFs demonstrated a high percentage of cell death compared to other cells with a low level of FAP expression analyzed by flow cytometry (e.g. MCF-10A, HDFa, and PC-B-142CAFs). This result emphasized the importance of anti-FAP antibody as a targeting ligand. These findings suggest that the fabricated nanosystem of OMF-loaded polymeric NPs with CAFs' high specificity holds a potential NP-based platform for improvement in breast cancer treatment.
{"title":"Development of cancer-associated fibroblasts-targeting polymeric nanoparticles loaded with 8-O-methylfusarubin for breast cancer treatment","authors":"Kamonlatth Rodponthukwaji , Suyanee Thongchot , Suttikiat Deureh , Tanva Thongkleang , Mattika Thaweesuvannasak , Kornrawee Srichan , Chatchawan Srisawat , Peti Thuwajit , Kytai T. Nguyen , Kwanruthai Tadpetch , Chanitra Thuwajit , Primana Punnakitikashem","doi":"10.1016/j.ijpx.2024.100294","DOIUrl":"10.1016/j.ijpx.2024.100294","url":null,"abstract":"<div><div>Cancer-associated fibroblasts (CAFs) are abundant stromal cells residing in a tumor microenvironment (TME) which are associated with the progression of tumor. Herein, we developed novel CAFs-targeting polymeric nanoparticles encapsulating a synthetic 8-<em>O</em>-methylfusarubin (OMF) compound (OMF@NPs-anti-FAP). Anti-FAP/fibroblast activation protein antibody was employed as a CAFs-targeting ligand. The physicochemical properties of the synthesized nanomaterials were firstly investigated with various techniques. The cytocompatibility of polymeric nanoparticles (NPs) was elicited through cell viability of CAFs and human breast epithelial cells, MCF-10A. Additionally, the anti-FAP-conjugated NPs displayed different degrees of cellular internalization regarding the FAP expression level on the CAFs' surface. However, CAFs exposed to NPs containing OMF demonstrated significant cell death which were associated with the apoptotic pathway as confirmed by caspase-3/7 activity. Upon OMF@NPs-anti-FAP treatment, an enhanced toxicity was clearly observed in 3D spheroid models. High FAP-expressed PC-B-132CAFs demonstrated a high percentage of cell death compared to other cells with a low level of FAP expression analyzed by flow cytometry (e.g. MCF-10A, HDFa, and PC-B-142CAFs). This result emphasized the importance of anti-FAP antibody as a targeting ligand. These findings suggest that the fabricated nanosystem of OMF-loaded polymeric NPs with CAFs' high specificity holds a potential NP-based platform for improvement in breast cancer treatment.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100294"},"PeriodicalIF":5.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.ijpx.2024.100288
Alejandro Seijo-Rabina , Santiago Paramés-Estevez , Angel Concheiro , Alberto Pérez-Muñuzuri , Carmen Alvarez-Lorenzo
Exudate absorption is a key parameter for proper wound dressing performance. Unlike standardized tests that consider exudate viscosity close to that of water, patients' exudates vary greatly in composition and, therefore, viscosity. This work aimed to investigate the effects of exudate viscosity and pore size of hydrogel-like dressings on the exudate absorption rate to establish rational criteria for the design of dressings that can meet the personalized needs of wound treatment. Computer-aided design (CAD) was used for Digital Light Processing (DLP) 3D printing of hydrogels with 0%, 30% and 60% porosity. The hydrogels were characterized in detail, and the absorption of two simulated exudate fluids (SEFs) was video-recorded. The same CAD files were used to develop in silico models to simulate exudate uptake rate. Both in vitro data and in silico modeling revealed that low-viscosity SEF penetrates faster through relatively small hydrogel pores (approx. 400 μm) compared to larger pores (approx. 1100 μm) due to capillary forces. However, in vitro vertical uptake took longer than when simulated using CAD design due to lateral fluid absorption through the pore walls in the hydrogel bulk. Distortions of hydrogel channels (micro-CT images) and lateral fluid absorption should be both considered for in silico simulation of SEF penetration. Overall, the results evidenced that porous hydrogel dressings allow rapid penetration (within a few seconds) and hosting of exudates, especially for pore size <1 mm. This information may be useful for design criteria of wound dressings with adequate fluid handling and drug release rate.
{"title":"Effect of wound dressing porosity and exudate viscosity on the exudate absorption: In vitro and in silico tests with 3D printed hydrogels","authors":"Alejandro Seijo-Rabina , Santiago Paramés-Estevez , Angel Concheiro , Alberto Pérez-Muñuzuri , Carmen Alvarez-Lorenzo","doi":"10.1016/j.ijpx.2024.100288","DOIUrl":"10.1016/j.ijpx.2024.100288","url":null,"abstract":"<div><div>Exudate absorption is a key parameter for proper wound dressing performance. Unlike standardized tests that consider exudate viscosity close to that of water, patients' exudates vary greatly in composition and, therefore, viscosity. This work aimed to investigate the effects of exudate viscosity and pore size of hydrogel-like dressings on the exudate absorption rate to establish rational criteria for the design of dressings that can meet the personalized needs of wound treatment. Computer-aided design (CAD) was used for Digital Light Processing (DLP) 3D printing of hydrogels with 0%, 30% and 60% porosity. The hydrogels were characterized in detail, and the absorption of two simulated exudate fluids (SEFs) was video-recorded. The same CAD files were used to develop <em>in silico</em> models to simulate exudate uptake rate. Both <em>in vitro</em> data and <em>in silico</em> modeling revealed that low-viscosity SEF penetrates faster through relatively small hydrogel pores (approx. 400 μm) compared to larger pores (approx. 1100 μm) due to capillary forces. However, <em>in vitro</em> vertical uptake took longer than when simulated using CAD design due to lateral fluid absorption through the pore walls in the hydrogel bulk. Distortions of hydrogel channels (micro-CT images) and lateral fluid absorption should be both considered for <em>in silico</em> simulation of SEF penetration. Overall, the results evidenced that porous hydrogel dressings allow rapid penetration (within a few seconds) and hosting of exudates, especially for pore size <1 mm. This information may be useful for design criteria of wound dressings with adequate fluid handling and drug release rate.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100288"},"PeriodicalIF":5.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.ijpx.2024.100293
Mayada Said , Khaled M. Ali , Munerah M. Alfadhel , Obaid Afzal , Basmah Nasser Aldosari , Maha Alsunbul , Rawan Bafail , Randa Mohammed Zaki
This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of −37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.
本研究旨在配制并从统计学角度优化磷酸泼尼松龙钠(PRED)海绵插件(SPLs-SI),以可控方式增强和维持其抗炎效果。使用 Design-Expert® 软件进行了 I-optimal 优化。配方变量包括超声时间、Span 60:EA 比率和边缘活化剂类型(吐温 80 或 PVA),而包封效率(EE%)、囊泡大小(VS)和 Zeta 电位(ZP)则被设定为因变量。这样就得出了一个最佳的跨塑料(SPLs)配方,其理想度为 0.919。该配方的 Span60 与 Tween80 的比例为 6:1,超声时间为 9.5 分钟。除了老化对其特性的影响外,还对其 EE%、VS、ZP、与药物溶液相比的释放行为进行了评估。它的 EE% 为 87.56,VS 为 152.2 nm,ZP 为 -37.38 Mv。与药物溶液相比,它显示了 PRED 的持续释放行为,并在 30 天内具有良好的稳定性。经优化的 PRED SPLs 制剂的 TEM 图像显示为球形非聚集纳米颗粒。然后,将其装入壳聚糖海绵插件中,对其外观、pH 值和粘附性进行了评估。结果表明,纳米颗粒具有良好的粘附性,在安全眼区的 pH 值也较高。傅立叶变换红外光谱(FTIR)、二沉积扫描光谱(DSC)和 X 射线衍射光谱(XRD)显示,PRED 成功地被包裹在 SPLs 囊泡中。随后对其进行了体内研究,结果表明,与市售的 PRED 溶液相比,每天使用一次的 SPLs 能够持续增强 PRED 的抗炎效果。这种海绵状插入物有望成为一种用于眼部递送 PRED 的载体。
{"title":"Ocular mucoadhesive and biodegradable spanlastics loaded cationic spongy insert for enhancing and sustaining the anti-inflammatory effect of prednisolone Na phosphate; Preparation, I-optimal optimization, and In-vivo evaluation","authors":"Mayada Said , Khaled M. Ali , Munerah M. Alfadhel , Obaid Afzal , Basmah Nasser Aldosari , Maha Alsunbul , Rawan Bafail , Randa Mohammed Zaki","doi":"10.1016/j.ijpx.2024.100293","DOIUrl":"10.1016/j.ijpx.2024.100293","url":null,"abstract":"<div><div>This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of −37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100293"},"PeriodicalIF":5.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}