Eleanor S. Smith , Christopher Fleet , Stuart King , William Mackaness , Hannah Walker , Catherine E. Scott
{"title":"Estimating the density of urban trees in 1890s Leeds and Edinburgh using object detection on historical maps","authors":"Eleanor S. Smith , Christopher Fleet , Stuart King , William Mackaness , Hannah Walker , Catherine E. Scott","doi":"10.1016/j.compenvurbsys.2024.102219","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new end-to-end methodology for extracting symbols from historical maps and demonstrate an application of the method to extract details of the urban forests of Leeds and Edinburgh in the UK using Ordnance Survey maps from the 1890s. The methods presented allow tree symbols on 1:500 scale maps to be efficiently extracted, with our object detection model achieving an <em>F</em><sub><em>1</em></sub>-score of 0.945. The results for each city are presented on the National Library of Scotland website and have been used to generate an estimate of 37 ± 1 tree symbols per hectare for Leeds in 1888–90 and 40 ± 1 tree symbols per hectare for Edinburgh in 1893–94. This is the first time that quantitative data has been obtained for historical urban tree counts in these two cities. The method presented can be expanded to other UK towns and cities and is a valuable tool for learning about the past, and changes to both the natural and built environment over time, aiding decisions on future tree planting. We discuss the process used to automate the generation of training data and to train a machine learning model to extract the symbols, comparing it with other possible models. This discussion provides context on how best to tackle similar problems of symbol extraction from historical maps and the issues that may arise in such automated analysis, alongside factors that must be considered when using historical maps as a data source.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"115 ","pages":"Article 102219"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524001480","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new end-to-end methodology for extracting symbols from historical maps and demonstrate an application of the method to extract details of the urban forests of Leeds and Edinburgh in the UK using Ordnance Survey maps from the 1890s. The methods presented allow tree symbols on 1:500 scale maps to be efficiently extracted, with our object detection model achieving an F1-score of 0.945. The results for each city are presented on the National Library of Scotland website and have been used to generate an estimate of 37 ± 1 tree symbols per hectare for Leeds in 1888–90 and 40 ± 1 tree symbols per hectare for Edinburgh in 1893–94. This is the first time that quantitative data has been obtained for historical urban tree counts in these two cities. The method presented can be expanded to other UK towns and cities and is a valuable tool for learning about the past, and changes to both the natural and built environment over time, aiding decisions on future tree planting. We discuss the process used to automate the generation of training data and to train a machine learning model to extract the symbols, comparing it with other possible models. This discussion provides context on how best to tackle similar problems of symbol extraction from historical maps and the issues that may arise in such automated analysis, alongside factors that must be considered when using historical maps as a data source.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.