Guangyong Zeng , Xia Zheng , Peng Wang , Xi Chen , Hongshan Wang , Yuan Xiang , Jianquan Luo , Yu-Hsuan Chiao , Shengyan Pu
{"title":"High-performance membranes based on two-dimensional materials for removing emerging contaminants from water systems: Progress and challenges","authors":"Guangyong Zeng , Xia Zheng , Peng Wang , Xi Chen , Hongshan Wang , Yuan Xiang , Jianquan Luo , Yu-Hsuan Chiao , Shengyan Pu","doi":"10.1016/j.desal.2024.118294","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging contaminants (ECs) pose significant environmental risks. They also present health hazards due to their persistence and resistance to degradation. Membrane separation has emerged as a promising technique for ECs removal, offering high precision and minimal secondary pollution. However, conventional membranes face challenges like selectivity-permeability trade-offs and fouling, limiting their effectiveness. Recent advancements involve incorporating two-dimensional (2D) materials such as graphene oxide (GO) and MXene into polymer membranes through layer-by-layer stacking or as additives to enhance the overall performance. While existing reviews generally cover the importance of membrane technologies and the role of 2D materials, there is a lack of comprehensive analysis focusing on the specific challenges and the innovative integration of 2D materials to address these challenges. This review discusses various methods of membrane modification using typical 2D materials, along with the latest research findings on novel composite membranes for the separation and degradation of different types of ECs in wastewater. Furthermore, it summarizes the removal mechanisms of these innovative membranes for ECs, providing valuable insights for the future development of high-performance membranes based on 2D materials.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118294"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424010051","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging contaminants (ECs) pose significant environmental risks. They also present health hazards due to their persistence and resistance to degradation. Membrane separation has emerged as a promising technique for ECs removal, offering high precision and minimal secondary pollution. However, conventional membranes face challenges like selectivity-permeability trade-offs and fouling, limiting their effectiveness. Recent advancements involve incorporating two-dimensional (2D) materials such as graphene oxide (GO) and MXene into polymer membranes through layer-by-layer stacking or as additives to enhance the overall performance. While existing reviews generally cover the importance of membrane technologies and the role of 2D materials, there is a lack of comprehensive analysis focusing on the specific challenges and the innovative integration of 2D materials to address these challenges. This review discusses various methods of membrane modification using typical 2D materials, along with the latest research findings on novel composite membranes for the separation and degradation of different types of ECs in wastewater. Furthermore, it summarizes the removal mechanisms of these innovative membranes for ECs, providing valuable insights for the future development of high-performance membranes based on 2D materials.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.