Bo Fu , Yuming Chen , Yi Quan , Xilin Zhou , Chaoshun Li
{"title":"Bidirectional artificial potential field-based ant colony optimization for robot path planning","authors":"Bo Fu , Yuming Chen , Yi Quan , Xilin Zhou , Chaoshun Li","doi":"10.1016/j.robot.2024.104834","DOIUrl":null,"url":null,"abstract":"<div><div>Ant colony optimization (ACO) is a common approach for addressing mobile robot path planning problems. However, it still encounters some challenges including slow convergence speed, susceptibility to local optima, and a tendency to falling into traps. We propose a bidirectional artificial potential field-based ant colony optimization (BAPFACO) algorithm to solve these issues. First, the bidirectional artificial potential field is introduced to initialize the grid environment model and restrict direction selection to jump out of the trap. Second, an adaptive heuristic function is presented to strengthen directionality of the algorithm and reduce the turning times. Third, a pseudo-random state transition rule based on potential difference between starting and ending nodes is developed to accelerate convergence speed. Finally, an improved pheromone update strategy incorporating pheromone diffusion mechanism and elite ants update strategy is proposed to help getting out of local optima. To demonstrate the advantages of BAPFACO, the validation of the performance in six different complexity environments and comparative experiments with other conventional search algorithms and ACO variants are conducted. The results of experiment show that compared to various ACO variants, BAPFACO have advantages in terms of reducing the turning times, shortening path length, improving convergence speed and avoiding ant loss. In complex environments, compared to IHMACO, the average path length enhancement percentage (<em>PLE</em>) of BAPFACO is 20.98%, the average iterations enhancement percentage (<em>IE</em>) of BAPFACO is 20.00% and the average turning times enhancement percentage (<em>TE</em>) of BAPFACO is 49.43%. These results firmly demonstrate the efficiency and practicality of the BAPFACO algorithm for mobile robot in path planning.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"183 ","pages":"Article 104834"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002185","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Ant colony optimization (ACO) is a common approach for addressing mobile robot path planning problems. However, it still encounters some challenges including slow convergence speed, susceptibility to local optima, and a tendency to falling into traps. We propose a bidirectional artificial potential field-based ant colony optimization (BAPFACO) algorithm to solve these issues. First, the bidirectional artificial potential field is introduced to initialize the grid environment model and restrict direction selection to jump out of the trap. Second, an adaptive heuristic function is presented to strengthen directionality of the algorithm and reduce the turning times. Third, a pseudo-random state transition rule based on potential difference between starting and ending nodes is developed to accelerate convergence speed. Finally, an improved pheromone update strategy incorporating pheromone diffusion mechanism and elite ants update strategy is proposed to help getting out of local optima. To demonstrate the advantages of BAPFACO, the validation of the performance in six different complexity environments and comparative experiments with other conventional search algorithms and ACO variants are conducted. The results of experiment show that compared to various ACO variants, BAPFACO have advantages in terms of reducing the turning times, shortening path length, improving convergence speed and avoiding ant loss. In complex environments, compared to IHMACO, the average path length enhancement percentage (PLE) of BAPFACO is 20.98%, the average iterations enhancement percentage (IE) of BAPFACO is 20.00% and the average turning times enhancement percentage (TE) of BAPFACO is 49.43%. These results firmly demonstrate the efficiency and practicality of the BAPFACO algorithm for mobile robot in path planning.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.