Zn2+-decorated porous g-C3N4 with nitrogen vacancies: Synthesis, enhanced photocatalytic performance and mechanism in degrading organic contaminants

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-11-10 DOI:10.1016/j.materresbull.2024.113193
Ruxue Ma , Han Zheng , Jing Wang , Xiucheng Zheng , Xiaoli Zhang , Xinxin Guan
{"title":"Zn2+-decorated porous g-C3N4 with nitrogen vacancies: Synthesis, enhanced photocatalytic performance and mechanism in degrading organic contaminants","authors":"Ruxue Ma ,&nbsp;Han Zheng ,&nbsp;Jing Wang ,&nbsp;Xiucheng Zheng ,&nbsp;Xiaoli Zhang ,&nbsp;Xinxin Guan","doi":"10.1016/j.materresbull.2024.113193","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic degradation is an effective and challenging strategy in purifying wastewaters containing organic pollutants. Thus, developing a suitable photocatalyst and clarifying the degradation mechanism are extremely worthwhile. In this work, Zn<sup>2+</sup>-decorated porous g-C<sub>3</sub>N<sub>4</sub> with nitrogen vacancies (g-C<sub>3</sub>N<sub>4-δ</sub>) is prepared with the facile sonication-calcination method. Benefitting from the modified geometric structure and electronic properties, compared with g-C<sub>3</sub>N<sub>4-δ</sub>, the resulting composites deliver reduced micropore percentage, enhanced separation and migration of photogenerated carriers, narrowed band gap, and improved reducing capacity of photoinduced electrons, favoring the photocatalytic reaction. Particularly, Zn<sup>2+</sup>(2)-g-C<sub>3</sub>N<sub>4-δ</sub> (10 mg) displays the highest photocatalytic activity toward eliminating tetracycline (TC, 10 mg L<sup>-1</sup>, 50 mL), and the degradation efficiency (63.9%) within 30 min is 3.4 times that of g-C<sub>3</sub>N<sub>4-δ</sub> (18.9%) irradiated by visible light. Moreover, the optimal composite demonstrates satisfactory recyclability and excellent universality. This study suggests a novel way to construct g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts for efficiently degrading organic contaminants in water.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113193"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005233","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic degradation is an effective and challenging strategy in purifying wastewaters containing organic pollutants. Thus, developing a suitable photocatalyst and clarifying the degradation mechanism are extremely worthwhile. In this work, Zn2+-decorated porous g-C3N4 with nitrogen vacancies (g-C3N4-δ) is prepared with the facile sonication-calcination method. Benefitting from the modified geometric structure and electronic properties, compared with g-C3N4-δ, the resulting composites deliver reduced micropore percentage, enhanced separation and migration of photogenerated carriers, narrowed band gap, and improved reducing capacity of photoinduced electrons, favoring the photocatalytic reaction. Particularly, Zn2+(2)-g-C3N4-δ (10 mg) displays the highest photocatalytic activity toward eliminating tetracycline (TC, 10 mg L-1, 50 mL), and the degradation efficiency (63.9%) within 30 min is 3.4 times that of g-C3N4-δ (18.9%) irradiated by visible light. Moreover, the optimal composite demonstrates satisfactory recyclability and excellent universality. This study suggests a novel way to construct g-C3N4-based photocatalysts for efficiently degrading organic contaminants in water.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含氮空位的Zn2+装饰多孔g-C3N4:合成、增强的光催化性能和降解有机污染物的机理
在净化含有有机污染物的废水方面,光催化降解是一种既有效又具有挑战性的策略。因此,开发一种合适的光催化剂并阐明其降解机理是非常有价值的。本研究采用简便的超声煅烧法制备了具有氮空位的 Zn2+ 装饰多孔 g-C3N4(g-CN4-δ)。与 g-C3N4-δ 相比,由于改变了几何结构和电子特性,所制备的复合材料减少了微孔比例,增强了光生载流子的分离和迁移,缩小了带隙,提高了光诱导电子的还原能力,有利于光催化反应。其中,Zn2+(2)-g-C3N4-δ(10 毫克)对消除四环素(TC,10 毫克/升,50 毫升)的光催化活性最高,30 分钟内的降解效率(63.9%)是用可见光照射 g-C3N4-δ (18.9%)的 3.4 倍。此外,这种最佳复合材料还具有令人满意的可回收性和出色的通用性。这项研究为构建基于 g-C3N4 的光催化剂,高效降解水中的有机污染物提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Editorial Board Fabrication of Dy:GdVO4 single crystals and evaluation of scintillation performance Enhanced piezoelectric response of Na0.5Bi0.5TiO3-BaTiO3 lead free ceramics by tuning the local polar heterogeneity Engineering novel MnxCd1-xS self-assembled p-n junction modified with NiS for enhanced photocatalytic hydrogen evolution Magnetic behavior of nanofilms prepared by assembling different Co ferrite nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1