Efficient enhancement of piezo-catalytic activity of BaTiO3-based piezoelectric ceramics via phase boundary engineering

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-11-10 DOI:10.1016/j.materresbull.2024.113188
Luoping Yang , Daen Zhao , Tingting Du , Qiaoji Zheng , Dunmin Lin , Xuemei He , Mengjiao Liu , Yuanming Chen , Wei He
{"title":"Efficient enhancement of piezo-catalytic activity of BaTiO3-based piezoelectric ceramics via phase boundary engineering","authors":"Luoping Yang ,&nbsp;Daen Zhao ,&nbsp;Tingting Du ,&nbsp;Qiaoji Zheng ,&nbsp;Dunmin Lin ,&nbsp;Xuemei He ,&nbsp;Mengjiao Liu ,&nbsp;Yuanming Chen ,&nbsp;Wei He","doi":"10.1016/j.materresbull.2024.113188","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric catalysis stemmed from lead-free piezoelectric ceramics is an emerging catalytic technology applied extensively in degradation of organic pollutants due to its low energy consumption and non-pollution. However, the dissatisfied catalytic efficiency of lead-free piezoelectric ceramics has constrained their further development and application. Herein, we employ ion doping to modulate the phase boundary construction of BaTiO<sub>3</sub>-based piezoelectric ceramics (BaTi<sub>(1-</sub><em><sub>x</sub></em><sub>)</sub>(Zr<sub>1/3</sub>Sn<sub>1/3</sub>Hf<sub>1/3</sub>)<em><sub>x</sub></em>O<sub>3</sub>, BTZSH-<em>x</em>), and the degradation performances of organic dyes are explored to illuminate the piezo-catalytic mechanism. The ion doping alters the phase boundary of BaTiO<sub>3</sub> ceramics and a two-phase coexistence of rhombohedral-orthorhombic is achieved at room temperature in BTZSH-0.04 ceramic. Consequently, the BTZSH-0.04 ceramic exhibits an excellent degradation efficiency of rhodamine B with 97.27% in 60min and a high reaction rate constant of 0.056 min<sup>−1</sup> under ultrasonication which is 7.4 times more than that of pristine BaTiO<sub>3</sub>. This work provides an advisable policy for constructing environmental-friendly piezoelectric materials with glorious piezo-catalytic activity.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113188"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082400518X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric catalysis stemmed from lead-free piezoelectric ceramics is an emerging catalytic technology applied extensively in degradation of organic pollutants due to its low energy consumption and non-pollution. However, the dissatisfied catalytic efficiency of lead-free piezoelectric ceramics has constrained their further development and application. Herein, we employ ion doping to modulate the phase boundary construction of BaTiO3-based piezoelectric ceramics (BaTi(1-x)(Zr1/3Sn1/3Hf1/3)xO3, BTZSH-x), and the degradation performances of organic dyes are explored to illuminate the piezo-catalytic mechanism. The ion doping alters the phase boundary of BaTiO3 ceramics and a two-phase coexistence of rhombohedral-orthorhombic is achieved at room temperature in BTZSH-0.04 ceramic. Consequently, the BTZSH-0.04 ceramic exhibits an excellent degradation efficiency of rhodamine B with 97.27% in 60min and a high reaction rate constant of 0.056 min−1 under ultrasonication which is 7.4 times more than that of pristine BaTiO3. This work provides an advisable policy for constructing environmental-friendly piezoelectric materials with glorious piezo-catalytic activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相界工程有效增强 BaTiO3 基压电陶瓷的压电催化活性
源于无铅压电陶瓷的压电催化技术是一种新兴的催化技术,因其能耗低、无污染而被广泛应用于有机污染物的降解。然而,无铅压电陶瓷的催化效率不尽如人意,制约了其进一步发展和应用。在此,我们采用离子掺杂的方法来调节 BaTiO3 基压电陶瓷(BaTi(1-x)(Zr1/3Sn1/3Hf1/3)xO3,BTZSH-x)的相界结构,并探索了有机染料的降解性能,从而阐明了压电催化机理。离子掺杂改变了 BaTiO3 陶瓷的相界,BTZSH-0.04 陶瓷在室温下实现了斜方体-正方体两相共存。因此,BTZSH-0.04 陶瓷在 60 分钟内对罗丹明 B 的降解效率高达 97.27%,在超声条件下的反应速率常数高达 0.056 min-1,是原始 BaTiO3 的 7.4 倍。这项工作为构建具有优异压电催化活性的环保型压电材料提供了可取的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Editorial Board Fabrication of Dy:GdVO4 single crystals and evaluation of scintillation performance Enhanced piezoelectric response of Na0.5Bi0.5TiO3-BaTiO3 lead free ceramics by tuning the local polar heterogeneity Engineering novel MnxCd1-xS self-assembled p-n junction modified with NiS for enhanced photocatalytic hydrogen evolution Magnetic behavior of nanofilms prepared by assembling different Co ferrite nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1