An AI model for predicting the spatiotemporal evolution process of coastal waves by using the Improved-STID algorithm

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Applied Ocean Research Pub Date : 2024-11-06 DOI:10.1016/j.apor.2024.104299
Xinyu Huang , Jun Tang , Yongming Shen , Chenhao Zhang
{"title":"An AI model for predicting the spatiotemporal evolution process of coastal waves by using the Improved-STID algorithm","authors":"Xinyu Huang ,&nbsp;Jun Tang ,&nbsp;Yongming Shen ,&nbsp;Chenhao Zhang","doi":"10.1016/j.apor.2024.104299","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and rapid prediction of water wave evolution is crucial for ensuring the safe and healthy operation of ocean and coastal engineering. Using hourly wave data from the coastal areas of the Hawaiian Islands from 2019 to 2021, this study developed an artificial intelligence model for rapidly predicting the spatiotemporal evolution of coastal waves by improving the STID algorithm. In the study, the SWAN wave model was used to generate an initial training dataset for driving Improved-STID algorithm, where the Improved-STID algorithm and SWAN model share the same unstructured computational grid with good adaptability to complex topography. The proposed Improved-STID algorithm takes into account the overall spatiotemporal correlations of wave evolution across different regions. The results show that on the basis of prediction efficiency on a par with the original STID, the Improved-STID can be more accurately applied to the spatiotemporal evolution process of coastal waves. The prediction errors in this study are: the RMSE of 0.23 m, MAE of 0.14 m, MAPE of 17.96 %, and the calculation time of the proposed AI model is only about 1.8 % of that of the SWAN wave model.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"153 ","pages":"Article 104299"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004206","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and rapid prediction of water wave evolution is crucial for ensuring the safe and healthy operation of ocean and coastal engineering. Using hourly wave data from the coastal areas of the Hawaiian Islands from 2019 to 2021, this study developed an artificial intelligence model for rapidly predicting the spatiotemporal evolution of coastal waves by improving the STID algorithm. In the study, the SWAN wave model was used to generate an initial training dataset for driving Improved-STID algorithm, where the Improved-STID algorithm and SWAN model share the same unstructured computational grid with good adaptability to complex topography. The proposed Improved-STID algorithm takes into account the overall spatiotemporal correlations of wave evolution across different regions. The results show that on the basis of prediction efficiency on a par with the original STID, the Improved-STID can be more accurately applied to the spatiotemporal evolution process of coastal waves. The prediction errors in this study are: the RMSE of 0.23 m, MAE of 0.14 m, MAPE of 17.96 %, and the calculation time of the proposed AI model is only about 1.8 % of that of the SWAN wave model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用改进的 STID 算法预测海岸波浪时空演变过程的人工智能模型
准确、快速地预测水波演变对确保海洋和海岸工程的安全健康运行至关重要。本研究利用 2019 年至 2021 年夏威夷群岛沿海地区的每小时波浪数据,通过改进 STID 算法,开发了一种快速预测沿海波浪时空演变的人工智能模型。在该研究中,SWAN 波浪模型被用来生成用于驱动改进型 STID 算法的初始训练数据集,其中改进型 STID 算法和 SWAN 模型共享相同的非结构化计算网格,对复杂地形具有良好的适应性。所提出的 Improved-STID 算法考虑了不同区域波浪演变的整体时空相关性。结果表明,在预测效率与原 STID 相当的基础上,改进的 STID 可以更准确地应用于沿岸波浪的时空演变过程。本研究的预报误差为:RMSE 为 0.23 m,MAE 为 0.14 m,MAPE 为 17.96 %,而提出的人工智能模式的计算时间仅为 SWAN 波浪模式的 1.8 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
期刊最新文献
Toward an AI-enhanced hydro-morphodynamic model for nature-based solutions in coastal erosion mitigation Development of Spatial Clustering Method and Probabilistic Prediction Model for Maritime Accidents Active control of vibration and radiated noise in the shaft-shell coupled system of an underwater vehicle Investigation on dynamic response of J-tube submarine cable around monopile foundation Experimental observation on violent sloshing flows inside rectangular tank with flexible baffles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1