A large atomic partition model for materials discovery

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-11-08 DOI:10.1016/j.eml.2024.102262
Lintao Miao , Xiaoang Yuan , Chun Tang , Changfeng Chen , Enlai Gao
{"title":"A large atomic partition model for materials discovery","authors":"Lintao Miao ,&nbsp;Xiaoang Yuan ,&nbsp;Chun Tang ,&nbsp;Changfeng Chen ,&nbsp;Enlai Gao","doi":"10.1016/j.eml.2024.102262","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient prediction of benchmark properties is essential to the discovery of diverse functional materials, but searching vast element combinatorial and bonding configurational spaces presents formidable challenges to current computational techniques. Here, we devise a large atomic partition (LAP) model featuring a scheme to partition material properties into constituent atomic attributes, which are validated by a data-driven calibration procedure and assigned to elements across the periodic table, then utilized as raw ingredients to assemble and assess targeted properties of new materials. Distinct subtypes are designated for each element based on local atomic environments such as coordination number and valence state, and the parameter count of the LAP model can be tuned widely to tailor prediction accuracy and computational efficiency. As demonstrative case studies, we explore volumetric cohesive energy, bulk modulus, and shear modulus, and the results showcase superior accuracy, efficiency, universality, and interpretability of the LAP model compared to alternative approaches. Moreover, based on the predicted elastic moduli, we discover a series of rare and highly sought-after compounds exhibiting concurrent superior hardness and toughness, highlighting the promise of the LAP model in high-throughput screening for advanced materials with targeted outstanding functionalities.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"73 ","pages":"Article 102262"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and efficient prediction of benchmark properties is essential to the discovery of diverse functional materials, but searching vast element combinatorial and bonding configurational spaces presents formidable challenges to current computational techniques. Here, we devise a large atomic partition (LAP) model featuring a scheme to partition material properties into constituent atomic attributes, which are validated by a data-driven calibration procedure and assigned to elements across the periodic table, then utilized as raw ingredients to assemble and assess targeted properties of new materials. Distinct subtypes are designated for each element based on local atomic environments such as coordination number and valence state, and the parameter count of the LAP model can be tuned widely to tailor prediction accuracy and computational efficiency. As demonstrative case studies, we explore volumetric cohesive energy, bulk modulus, and shear modulus, and the results showcase superior accuracy, efficiency, universality, and interpretability of the LAP model compared to alternative approaches. Moreover, based on the predicted elastic moduli, we discover a series of rare and highly sought-after compounds exhibiting concurrent superior hardness and toughness, highlighting the promise of the LAP model in high-throughput screening for advanced materials with targeted outstanding functionalities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于材料发现的大原子分区模型
准确有效地预测基准属性对发现各种功能材料至关重要,但搜索庞大的元素组合和成键构型空间对当前的计算技术提出了严峻的挑战。在此,我们设计了一个大原子分区(LAP)模型,其特点是将材料特性划分为组成原子属性的方案,这些属性通过数据驱动的校准程序进行验证,并分配给元素周期表中的所有元素,然后利用这些元素作为原材料来组装和评估新材料的目标特性。根据配位数和价态等局部原子环境,为每种元素指定了不同的子类型,LAP 模型的参数数可进行广泛调整,以定制预测精度和计算效率。作为示范案例研究,我们探讨了体积内聚能、体积模量和剪切模量,结果表明与其他方法相比,LAP 模型具有更高的准确性、效率、通用性和可解释性。此外,根据预测的弹性模量,我们还发现了一系列稀有且备受追捧的化合物,它们同时表现出卓越的硬度和韧性,这凸显了 LAP 模型在高通量筛选具有目标性卓越功能的先进材料方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Atomic insights into the ductile–brittle competition of cracks under dissolution A large atomic partition model for materials discovery A model for micro-scale propulsion using flexible rotating flagella Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1