Zhipeng Yan , Hanwen Qu , Chen Chen , Xiaoyi Lv , Enguang Zuo , Kui Wang , Xulun Cai
{"title":"WIGNN: An adaptive graph-structured reasoning model for credit default prediction","authors":"Zhipeng Yan , Hanwen Qu , Chen Chen , Xiaoyi Lv , Enguang Zuo , Kui Wang , Xulun Cai","doi":"10.1016/j.engappai.2024.109597","DOIUrl":null,"url":null,"abstract":"<div><div>In credit default prediction, the main challenge is handling complex data structures and addressing data class imbalance. Given class imbalance and multi-dimensional data, general models find it difficult to fully explore the deep interdependencies within the data and the interaction effects between local and global. To overcome these challenges, this study proposes a Weighted Imbalanced Graph Neural Network (WIGNN) model that integrates adaptive graph structure inference with differential weight connectivity strategy, and the model solves the existing problems from the perspective of differential weight connectivity and graph balancing. Here, the weight connection uses the Gaussian kernel function to refine calculations and an adaptive percentile method to adjust sparsity, improving the understanding and efficiency of mining data connections. The weighted graph generated by this method can reflect the interaction between nodes and improve the model’s ability to analyse complex data structures. Based on this weighted graph, the graph imbalance module adopts a reinforcement learning-driven neighbour sampling strategy to adjust the sampling threshold automatically, optimizes the node embedding through message aggregation, and combines with a cost-sensitive matrix to improve classification accuracy and cost-effectiveness of the model on diverse credit datasets. We applied the WIGNN model to six real and class-imbalanced credit datasets, comparing it with 11 mainstream credit default prediction models. Evaluated using metrics Area Under the Curve (AUC), Geometric Mean (G-mean), and Accuracy. The results show that WIGNN significantly outperforms other models in handling class imbalance and graph sparsity, demonstrating its potential in financial credit applications.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109597"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401755X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In credit default prediction, the main challenge is handling complex data structures and addressing data class imbalance. Given class imbalance and multi-dimensional data, general models find it difficult to fully explore the deep interdependencies within the data and the interaction effects between local and global. To overcome these challenges, this study proposes a Weighted Imbalanced Graph Neural Network (WIGNN) model that integrates adaptive graph structure inference with differential weight connectivity strategy, and the model solves the existing problems from the perspective of differential weight connectivity and graph balancing. Here, the weight connection uses the Gaussian kernel function to refine calculations and an adaptive percentile method to adjust sparsity, improving the understanding and efficiency of mining data connections. The weighted graph generated by this method can reflect the interaction between nodes and improve the model’s ability to analyse complex data structures. Based on this weighted graph, the graph imbalance module adopts a reinforcement learning-driven neighbour sampling strategy to adjust the sampling threshold automatically, optimizes the node embedding through message aggregation, and combines with a cost-sensitive matrix to improve classification accuracy and cost-effectiveness of the model on diverse credit datasets. We applied the WIGNN model to six real and class-imbalanced credit datasets, comparing it with 11 mainstream credit default prediction models. Evaluated using metrics Area Under the Curve (AUC), Geometric Mean (G-mean), and Accuracy. The results show that WIGNN significantly outperforms other models in handling class imbalance and graph sparsity, demonstrating its potential in financial credit applications.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.