Are you what you emoji? How skin tone emojis and profile pictures shape attention and social inference processing

IF 7.6 2区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE Telematics and Informatics Pub Date : 2024-11-01 DOI:10.1016/j.tele.2024.102207
Sofia Pelica , Tiago Rôxo Aguiar , Sofia Frade , Rita Guerra , Marília Prada
{"title":"Are you what you emoji? How skin tone emojis and profile pictures shape attention and social inference processing","authors":"Sofia Pelica ,&nbsp;Tiago Rôxo Aguiar ,&nbsp;Sofia Frade ,&nbsp;Rita Guerra ,&nbsp;Marília Prada","doi":"10.1016/j.tele.2024.102207","DOIUrl":null,"url":null,"abstract":"<div><div>Emojis can express emotions and some aspects of the sender’s identity; however, only limited research has explored how the choice of skin tone in emojis influences the perceptions of the users. We examined the interaction between emoji skin tones and profile pictures in instant messaging, using self-reported and eye tracking measures. White participants viewed 14 screenshots of conversations (9 target and 5 fillers) where the sender used an emoji in a Darker or Lighter skin tone, or the default Yellow; alongside profile pictures displaying a Black or White individual, or a landscape as a neutral condition. Results showed that Black senders using Darker emojis were seen as warmer and closer to the receiver, but less competent, suggesting a dimensional compensation effect. Conversely, Black senders using Lighter emojis appeared more competent, but less warm. In the Neutral condition, Lighter emojis improved warmth and relationship quality, but reduced competence inferences, unlike Yellow and Darker emojis, suggesting a black sheep effect (in-group strictness). Yellow emojis were assumed to be sent by White individuals. Eye-tracking measures revealed an implicit bias towards White senders using Darker emojis, although such an impact was not observed for Black senders using Lighter emojis. Overall, findings indicate that skin tone emojis and profile pictures influence sender perception and challenge the neutrality of Yellow emojis.</div></div>","PeriodicalId":48257,"journal":{"name":"Telematics and Informatics","volume":"95 ","pages":"Article 102207"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematics and Informatics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736585324001114","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Emojis can express emotions and some aspects of the sender’s identity; however, only limited research has explored how the choice of skin tone in emojis influences the perceptions of the users. We examined the interaction between emoji skin tones and profile pictures in instant messaging, using self-reported and eye tracking measures. White participants viewed 14 screenshots of conversations (9 target and 5 fillers) where the sender used an emoji in a Darker or Lighter skin tone, or the default Yellow; alongside profile pictures displaying a Black or White individual, or a landscape as a neutral condition. Results showed that Black senders using Darker emojis were seen as warmer and closer to the receiver, but less competent, suggesting a dimensional compensation effect. Conversely, Black senders using Lighter emojis appeared more competent, but less warm. In the Neutral condition, Lighter emojis improved warmth and relationship quality, but reduced competence inferences, unlike Yellow and Darker emojis, suggesting a black sheep effect (in-group strictness). Yellow emojis were assumed to be sent by White individuals. Eye-tracking measures revealed an implicit bias towards White senders using Darker emojis, although such an impact was not observed for Black senders using Lighter emojis. Overall, findings indicate that skin tone emojis and profile pictures influence sender perception and challenge the neutrality of Yellow emojis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
你和你的表情符号一样吗?肤色表情符号和个人资料图片如何影响注意力和社交推理处理
表情符号可以表达情绪和发送者身份的某些方面;然而,只有有限的研究探讨了表情符号中肤色的选择如何影响用户的感知。我们使用自我报告和眼动跟踪测量法研究了即时信息中表情符号肤色与个人资料图片之间的互动关系。白人参与者观看了 14 张对话截图(9 张目标对话截图和 5 张填充对话截图),在这些对话截图中,发送者使用了肤色较深或较浅的表情符号,或使用了默认的黄色表情符号;同时显示的还有黑人或白人的个人资料图片,或作为中性条件的风景图片。结果显示,使用深色表情符号的黑人发件人被认为更温暖、更接近收件人,但能力较弱,这表明存在维度补偿效应。相反,使用浅色表情符号的黑人发件人显得更有能力,但不那么温暖。在中性条件下,与黄色和深色表情符号不同,浅色表情符号提高了温暖度和关系质量,但降低了能力推断,这表明存在害群之马效应(群体内严格性)。黄色表情符号被认为是由白人发送的。眼动跟踪测量显示,使用深色表情符号的白人发送者会受到隐性偏见的影响,而使用浅色表情符号的黑人发送者则不会受到这种影响。总之,研究结果表明,肤色表情符号和个人资料图片会影响发件人的感知,并挑战黄色表情符号的中立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Telematics and Informatics
Telematics and Informatics INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
17.00
自引率
4.70%
发文量
104
审稿时长
24 days
期刊介绍: Telematics and Informatics is an interdisciplinary journal that publishes cutting-edge theoretical and methodological research exploring the social, economic, geographic, political, and cultural impacts of digital technologies. It covers various application areas, such as smart cities, sensors, information fusion, digital society, IoT, cyber-physical technologies, privacy, knowledge management, distributed work, emergency response, mobile communications, health informatics, social media's psychosocial effects, ICT for sustainable development, blockchain, e-commerce, and e-government.
期刊最新文献
Unveiling the dynamics of binge-scrolling: A comprehensive analysis of short-form video consumption using a Stimulus-Organism-Response model Motivations behind problematic short video use: A three-level meta-analysis Crypto-Cognitive Exploitation: Integrating Cognitive, Social, and Technological perspectives on cryptocurrency fraud Are you what you emoji? How skin tone emojis and profile pictures shape attention and social inference processing Engaging with underserved communities during times of crises: A computational analysis of social media interactions with government information about COVID-19 economic relief programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1