Attention based network for fusion of polarimetric and contextual features for polarimetric synthetic aperture radar image classification

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-15 DOI:10.1016/j.engappai.2024.109665
Maryam Imani
{"title":"Attention based network for fusion of polarimetric and contextual features for polarimetric synthetic aperture radar image classification","authors":"Maryam Imani","doi":"10.1016/j.engappai.2024.109665","DOIUrl":null,"url":null,"abstract":"<div><div>Polarimetric synthetic aperture radar (PolSAR) images containing polarimetric, scattering and contextual features are useful radar data for ground surface classification. Appropriate feature extraction and fusion by using a small set of available labeled samples is an important and challenging task. Several transformers with self-attention mechanism have recently achieved great success for PolSAR image classification. While almost all methods just exploit the self-attention features from the PolSAR cube, the feature fusion method proposed in this work, which is called attention based scattering and contextual (ASC) network, utilizes the polarimetric self-attention beside two cross-attention blocks. The cross-attention blocks extract the polarimetric-scattering dependencies and polarimetric-contextual interactions, individually. The proposed ASC network uses three inputs: the PolSAR cube, the scattering feature maps obtained by clustering of the entropy-alpha features, and the segmentation maps obtained by a super-pixel generation algorithm. The features extracted by self- and cross-attention blocks are fused together, and the residual learning improves the feature learning. While transformers and attention-based networks usually need large training sets, the proposed ASC network shows high efficiency with relatively low number of training samples in various real and synthetic PolSAR images. For example, in the Flevoland PolSAR image containing 15 classes acquired by AIRSAR in L-band, with using 100 training samples per class (less than 1% of labeled samples), the ASC network achieves the overall accuracy of 99.51, which is statistically preferred than the self-attention-based network according to the McNemars test.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109665"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018232","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Polarimetric synthetic aperture radar (PolSAR) images containing polarimetric, scattering and contextual features are useful radar data for ground surface classification. Appropriate feature extraction and fusion by using a small set of available labeled samples is an important and challenging task. Several transformers with self-attention mechanism have recently achieved great success for PolSAR image classification. While almost all methods just exploit the self-attention features from the PolSAR cube, the feature fusion method proposed in this work, which is called attention based scattering and contextual (ASC) network, utilizes the polarimetric self-attention beside two cross-attention blocks. The cross-attention blocks extract the polarimetric-scattering dependencies and polarimetric-contextual interactions, individually. The proposed ASC network uses three inputs: the PolSAR cube, the scattering feature maps obtained by clustering of the entropy-alpha features, and the segmentation maps obtained by a super-pixel generation algorithm. The features extracted by self- and cross-attention blocks are fused together, and the residual learning improves the feature learning. While transformers and attention-based networks usually need large training sets, the proposed ASC network shows high efficiency with relatively low number of training samples in various real and synthetic PolSAR images. For example, in the Flevoland PolSAR image containing 15 classes acquired by AIRSAR in L-band, with using 100 training samples per class (less than 1% of labeled samples), the ASC network achieves the overall accuracy of 99.51, which is statistically preferred than the self-attention-based network according to the McNemars test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意力的网络,用于融合偏振和上下文特征,进行偏振合成孔径雷达图像分类
极坐标合成孔径雷达(PolSAR)图像包含极坐标、散射和上下文特征,是地表分类的有用雷达数据。利用少量可用的标注样本集进行适当的特征提取和融合是一项重要而具有挑战性的任务。最近,一些具有自注意机制的变换器在 PolSAR 图像分类方面取得了巨大成功。几乎所有的方法都只是利用 PolSAR 立方体中的自注意特征,而本研究提出的特征融合方法被称为基于注意散射和上下文(ASC)网络,它利用了偏振自注意和两个交叉注意块。交叉注意块分别提取极坐标-散射相关性和极坐标-上下文相互作用。拟议的 ASC 网络使用三个输入:PolSAR 立方体、通过熵-α 特征聚类获得的散射特征图,以及通过超级像素生成算法获得的分割图。自注意力和交叉注意力区块提取的特征融合在一起,残差学习改进了特征学习。变换器和基于注意力的网络通常需要大量的训练集,而所提出的 ASC 网络在各种真实和合成 PolSAR 图像中,只需要相对较少的训练样本,就能显示出较高的效率。例如,在由 AIRSAR 在 L 波段获取的包含 15 个类别的 Flevoland PolSAR 图像中,ASC 网络在每个类别使用 100 个训练样本(不到标注样本的 1%)的情况下,总体准确率达到 99.51,根据 McNemars 检验,在统计学上优于基于自我注意的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Chimney detection and size estimation from high-resolution optical satellite imagery using deep learning models Predicting rapid impact compaction of soil using a parallel transformer and long short-term memory architecture for sequential soil profile encoding Learning discriminative representations by a Canonical Correlation Analysis-based Siamese Network for offline signature verification Decoding text from electroencephalography signals: A novel Hierarchical Gated Recurrent Unit with Masked Residual Attention Mechanism A novel hybrid data-driven domain generalization approach with dual-perspective feature fusion for intelligent fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1