A multi-scale feature fusion network based on semi-channel attention for seismic phase picking

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-12-03 DOI:10.1016/j.engappai.2024.109739
Shuguang Zhao , Jiang Wang , Ping Huang , Fa Zhao , Fudong Zhang , Yadongyang Zhu
{"title":"A multi-scale feature fusion network based on semi-channel attention for seismic phase picking","authors":"Shuguang Zhao ,&nbsp;Jiang Wang ,&nbsp;Ping Huang ,&nbsp;Fa Zhao ,&nbsp;Fudong Zhang ,&nbsp;Yadongyang Zhu","doi":"10.1016/j.engappai.2024.109739","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of seismic data processing, deep learning technologies have been widely used for seismic phase picking. However, it is difficult to take full advantage of the features extracted at different stages in existing models. In this paper, a multi-scale feature fusion network was proposed for seismic phase picking to address this problem. In the stage of feature extraction, semi-channel attention is introduced. It improves the representation ability of the model by efficiently utilizing the feature information extracted from the encoder. In the stage of decoding, a channel compression module is designed to reduce the number of feature channels. It improves the receptive field of channels. Additionally, a multi-feature fusion module is presented to integrate features at multiple scales. It reduces the loss of useful information and improves the accuracy of phase picking. The effectiveness of our network is validated on Stanford earthquake dataset, where the picking errors for phase picking are 2 ms. The parameter of our network is only 52,100. Compared with earthquake transformer, it has 42.1% fewer time costs to process 12,656 test samples on Graphics Processing Unit.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"141 ","pages":"Article 109739"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018979","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of seismic data processing, deep learning technologies have been widely used for seismic phase picking. However, it is difficult to take full advantage of the features extracted at different stages in existing models. In this paper, a multi-scale feature fusion network was proposed for seismic phase picking to address this problem. In the stage of feature extraction, semi-channel attention is introduced. It improves the representation ability of the model by efficiently utilizing the feature information extracted from the encoder. In the stage of decoding, a channel compression module is designed to reduce the number of feature channels. It improves the receptive field of channels. Additionally, a multi-feature fusion module is presented to integrate features at multiple scales. It reduces the loss of useful information and improves the accuracy of phase picking. The effectiveness of our network is validated on Stanford earthquake dataset, where the picking errors for phase picking are 2 ms. The parameter of our network is only 52,100. Compared with earthquake transformer, it has 42.1% fewer time costs to process 12,656 test samples on Graphics Processing Unit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于半信道关注的地震相位提取多尺度特征融合网络
在地震数据处理领域,深度学习技术已被广泛应用于地震相位提取。然而,现有模型很难充分利用在不同阶段提取的特征。为了解决这一问题,本文提出了一种多尺度特征融合网络用于地震相位提取。在特征提取阶段,引入了半通道关注。通过有效地利用从编码器中提取的特征信息,提高了模型的表示能力。在解码阶段,设计了信道压缩模块,减少特征信道的数量。它改善了通道的接受区。此外,提出了多特征融合模块,实现了多尺度特征的融合。减少了有用信息的丢失,提高了相位选择的精度。在斯坦福地震数据集上验证了我们网络的有效性,其中相位拾取的拾取误差为2 ms。我们的网络参数只有52,100。与地震变压器相比,在图形处理单元上处理12656个测试样本的时间成本降低了42.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples Deep interval type-2 generalized fuzzy hyperbolic tangent system for nonlinear regression prediction A multi-scale feature fusion network based on semi-channel attention for seismic phase picking Editorial Board Enhancing camouflaged object detection through contrastive learning and data augmentation techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1