Methyl jasmonate attenuates chilling injury of prune fruit by maintaining ROS homeostasis and regulating GABA metabolism and energy status

IF 6.4 1区 农林科学 Q1 AGRONOMY Postharvest Biology and Technology Pub Date : 2024-11-09 DOI:10.1016/j.postharvbio.2024.113303
Yating Zhao , Yingjie Wu , Xuan Zhang , Xuan Zhu , Yuanyuan Hou , Jianye Chen , Kuanbo Cui , Xuewen Li , Wenxin Wu
{"title":"Methyl jasmonate attenuates chilling injury of prune fruit by maintaining ROS homeostasis and regulating GABA metabolism and energy status","authors":"Yating Zhao ,&nbsp;Yingjie Wu ,&nbsp;Xuan Zhang ,&nbsp;Xuan Zhu ,&nbsp;Yuanyuan Hou ,&nbsp;Jianye Chen ,&nbsp;Kuanbo Cui ,&nbsp;Xuewen Li ,&nbsp;Wenxin Wu","doi":"10.1016/j.postharvbio.2024.113303","DOIUrl":null,"url":null,"abstract":"<div><div>Cold storage is an important means to prolong the storage life of postharvest fruits. However, prunes are prone to chilling injury (CI) at low temperatures, which in turn reduces their marketability. In this study, methyl jasmonate (MeJA) effectively inhibited the occurrence of CI, and reduced internal browning index and electrolyte leakage of prune fruit under low temperature (1 ± 1 °C), with the most significant inhibitory effect observed at the concentration of 10 μM. Also, MeJA alleviated the overproduction of reactive oxygen species (ROS) by promoting the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase) and the expression level of their coding genes, thereby maintaining the integrity of the mitochondrial structure of prune fruit. Moreover, MeJA maintained higher content of γ-aminobutyric acid (GABA) through stimulating glutamate decarboxylase activity and retained higher energy levels by promoting the activity of succinate dehydrogenase, cytochrome C oxidase, H<sup>+</sup>-ATPase, Ca<sup>2+</sup>-ATPase, GABA transaminase, and succinic semialdehyde dehydrogenase and expression level of the corresponding gene of prune fruit. Our findings not only shed light on the inhibitory effect of MeJA on CI of prune fruit from the perspective of reducing ROS-induced oxidative damage to maintain mitochondrial structure, activating GABA shunt, and maintaining energy supply but also provide means of alleviating CI of prune fruit during postharvest storage.</div></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"220 ","pages":"Article 113303"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424005489","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Cold storage is an important means to prolong the storage life of postharvest fruits. However, prunes are prone to chilling injury (CI) at low temperatures, which in turn reduces their marketability. In this study, methyl jasmonate (MeJA) effectively inhibited the occurrence of CI, and reduced internal browning index and electrolyte leakage of prune fruit under low temperature (1 ± 1 °C), with the most significant inhibitory effect observed at the concentration of 10 μM. Also, MeJA alleviated the overproduction of reactive oxygen species (ROS) by promoting the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase) and the expression level of their coding genes, thereby maintaining the integrity of the mitochondrial structure of prune fruit. Moreover, MeJA maintained higher content of γ-aminobutyric acid (GABA) through stimulating glutamate decarboxylase activity and retained higher energy levels by promoting the activity of succinate dehydrogenase, cytochrome C oxidase, H+-ATPase, Ca2+-ATPase, GABA transaminase, and succinic semialdehyde dehydrogenase and expression level of the corresponding gene of prune fruit. Our findings not only shed light on the inhibitory effect of MeJA on CI of prune fruit from the perspective of reducing ROS-induced oxidative damage to maintain mitochondrial structure, activating GABA shunt, and maintaining energy supply but also provide means of alleviating CI of prune fruit during postharvest storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茉莉酸甲酯通过维持 ROS 平衡、调节 GABA 代谢和能量状态减轻西梅果实的冷冻损伤
冷藏是延长采后水果贮藏寿命的重要手段。然而,西梅在低温条件下很容易发生冷害(CI),进而降低其适销性。在这项研究中,茉莉酸甲酯(MeJA)可有效抑制低温(1 ± 1 °C)条件下西梅果实冷害的发生,降低内部褐变指数和电解质渗漏,其中 10 μM 浓度的抑制作用最为显著。同时,MeJA 通过促进抗氧化酶(超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶)的活性及其编码基因的表达水平,缓解了活性氧(ROS)的过度产生,从而保持了西梅果实线粒体结构的完整性。此外,MeJA 还通过刺激谷氨酸脱羧酶的活性来维持较高的γ-氨基丁酸(GABA)含量,并通过促进琥珀酸脱氢酶、细胞色素 C 氧化酶、H+-ATP 酶、Ca2+-ATP 酶、GABA 转氨酶和琥珀酸半醛脱氢酶的活性及相应基因的表达水平来维持较高的能量水平。我们的研究结果不仅从减少 ROS 诱导的氧化损伤以维持线粒体结构、激活 GABA 分流和维持能量供应的角度阐明了 MeJA 对西梅果实 CI 的抑制作用,还为缓解西梅果实在采后贮藏期间的 CI 提供了方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Postharvest Biology and Technology
Postharvest Biology and Technology 农林科学-农艺学
CiteScore
12.00
自引率
11.40%
发文量
309
审稿时长
38 days
期刊介绍: The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages. Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing. Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.
期刊最新文献
Flower senescence: A comprehensive update on hormonal regulation and molecular aspects of petal death Phenylpropanoid pathway mediated the defense response of ‘Korla’ fragrant pear against Alternaria alternata infection Hydrogen sulfide enhances the disease resistance of ginger to rhizome rot during postharvest storage through modulation of antioxidant response and nitric oxide-mediated S-nitrosylaion Gypenoside GP5 effectively controls Colletotrichum gloeosporioides, an anthracnose fungus, by activating autophagy A comprehensive transcriptomic and metabolomic map reveals the molecular mechanism of persimmon fruit deastringency upon 40 °C warm water treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1