Optimal design of a high-performance heat exchanger for modular thermoelectric generator towards low-grade thermal energy recovery

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-08 DOI:10.1016/j.applthermaleng.2024.124849
Entong Xia , Heping Xie , Licheng Sun , Xiting Long , Jun Wang , Tianyi Gao , Shuheng Li , Biao Li , Cunbao Li , Mingzhong Gao , Zhengyu Mo , Min Du
{"title":"Optimal design of a high-performance heat exchanger for modular thermoelectric generator towards low-grade thermal energy recovery","authors":"Entong Xia ,&nbsp;Heping Xie ,&nbsp;Licheng Sun ,&nbsp;Xiting Long ,&nbsp;Jun Wang ,&nbsp;Tianyi Gao ,&nbsp;Shuheng Li ,&nbsp;Biao Li ,&nbsp;Cunbao Li ,&nbsp;Mingzhong Gao ,&nbsp;Zhengyu Mo ,&nbsp;Min Du","doi":"10.1016/j.applthermaleng.2024.124849","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoelectric generator (TEG) has been identified as a promising method for low-grade thermal energy recovery owing to its lack of moving parts, scalability, and compatibility with other devices generating waste heat. Heat exchanger, as one of the most important components of the modular TEG, plays a crucial role in improving the overall performance of the TEG. Nevertheless, flow maldistribution inside the heat exchanger results in uneven surface temperature field of the heat exchanger, which will ultimately limit the output capacity of the TEG. Achieving a homogeneous flow distribution within the heat exchanger while minimizing flow resistance is essential. To address this, optimization of a plate-shaped heat exchanger for the modular TEG is conducted using CFD analysis and the Taguchi method to identify the optimal combination of parameters. The optimized heat exchanger demonstrates a flow maldistribution intensity (ζ) of only 4.75 % and a low flow resistance of 1.16 kPa. Furthermore, a unit of the modular TEG is constructed using two optimized heat exchangers and commercial thermoelectric modules (TEMs), and its performance is analyzed via an analytical model. The results indicate that the power per module, net power density, and conversion efficiency reached 1.2 W, 51.4 kW/m<sup>3</sup>, and 1.92 %, respectively, at a temperature difference of 70 °C. These findings suggest that the optimized heat exchanger could provide high output performance compared with other literature, offering significant potential for low-grade heat energy recovery.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"258 ","pages":"Article 124849"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124025171","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric generator (TEG) has been identified as a promising method for low-grade thermal energy recovery owing to its lack of moving parts, scalability, and compatibility with other devices generating waste heat. Heat exchanger, as one of the most important components of the modular TEG, plays a crucial role in improving the overall performance of the TEG. Nevertheless, flow maldistribution inside the heat exchanger results in uneven surface temperature field of the heat exchanger, which will ultimately limit the output capacity of the TEG. Achieving a homogeneous flow distribution within the heat exchanger while minimizing flow resistance is essential. To address this, optimization of a plate-shaped heat exchanger for the modular TEG is conducted using CFD analysis and the Taguchi method to identify the optimal combination of parameters. The optimized heat exchanger demonstrates a flow maldistribution intensity (ζ) of only 4.75 % and a low flow resistance of 1.16 kPa. Furthermore, a unit of the modular TEG is constructed using two optimized heat exchangers and commercial thermoelectric modules (TEMs), and its performance is analyzed via an analytical model. The results indicate that the power per module, net power density, and conversion efficiency reached 1.2 W, 51.4 kW/m3, and 1.92 %, respectively, at a temperature difference of 70 °C. These findings suggest that the optimized heat exchanger could provide high output performance compared with other literature, offering significant potential for low-grade heat energy recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向低品位热能回收的模块式热电发电机高性能热交换器的优化设计
热电发生器(TEG)因其无活动部件、可扩展性以及与其他产生废热的设备的兼容性,已被认为是一种有前途的低品位热能回收方法。热交换器作为模块化 TEG 最重要的组件之一,在提高 TEG 的整体性能方面发挥着至关重要的作用。然而,热交换器内部流量分布不均会导致热交换器表面温度场不均匀,最终限制 TEG 的输出能力。实现热交换器内的均匀流动分布,同时最大限度地减少流动阻力至关重要。为此,我们使用 CFD 分析和田口方法对模块化 TEG 的板状热交换器进行了优化,以确定参数的最佳组合。优化后的热交换器的流量分布失调强度(ζ)仅为 4.75%,流动阻力低至 1.16 kPa。此外,利用两个优化热交换器和商用热电模块(TEM)构建了模块化 TEG 单元,并通过分析模型对其性能进行了分析。结果表明,在温差为 70 °C 时,每个模块的功率、净功率密度和转换效率分别达到 1.2 W、51.4 kW/m3 和 1.92 %。这些结果表明,与其他文献相比,优化的热交换器可以提供较高的输出性能,为低品位热能回收提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Vortex-enhanced jet impingement and the role of impulse generation rate in heat removal using additively manufactured synthetic jet devices Experimental study and simulation of the rectifier nozzle-type critical distributor applied to the application of row tube plate instant freezer High temperature in-situ 3D monitor of microstructure evolution and heat transfer performance of metal foam Pulverization of municipal solid waste and utilization of pulverized product as alternative fuel for blast furnace injection Flow boiling of HFE-7100 for cooling Multi-Chip modules using manifold microchannels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1