Xue Wang , Haoyuan Geng , Dandan Wu , Liqi Wang , Na Zhang , Weining Wang , Dianyu Yu
{"title":"Isolation of ice structuring proteins from winter wheat in frigid region (Dongnongdongmai1) and the effect on freeze–thaw stability of dough","authors":"Xue Wang , Haoyuan Geng , Dandan Wu , Liqi Wang , Na Zhang , Weining Wang , Dianyu Yu","doi":"10.1016/j.foodres.2024.115295","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, ice structuring proteins (WISPs) extracted from winter wheat in a frigid region were prepared and added to frozen-thawed dough. The WISPs were characterized, revealing that they contained a higher proportion of hydrophilic amino acids and had a molecular weight of approximately 15 kDa. The highest thermal hysteresis activity (THA) observed was 0.62 °C. The secondary structure of WISPs was determined to be as follows: β-sheet: 49.33 %, random coil: 13.87 %, α-helix: 16.35 %, β-turn: 20.45 %. The study investigated the effects of different additions of WISPs on the water mobility, glass transition temperature, microstructure, rheological properties, and texture analysis of frozen-thawed dough. The results demonstrated that the inclusion of WISPs reduced the fluidity of water and water migration in the dough during the frozen-thawed cycle. This protective effect preserved the internal structure and gluten network of the dough, leading to increased viscosity, elasticity, and improved texture properties of the frozen-thawed dough. Furthermore, the addition of WISPs at concentrations ranging from 0 % to 0.7 % resulted in a 1.8 °C increase in the glass transition temperature (Tg). Overall, these findings suggest that WISPs can serve as a beneficial additive for enhancing the freeze–thaw stability of dough.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"197 ","pages":"Article 115295"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996924013656","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, ice structuring proteins (WISPs) extracted from winter wheat in a frigid region were prepared and added to frozen-thawed dough. The WISPs were characterized, revealing that they contained a higher proportion of hydrophilic amino acids and had a molecular weight of approximately 15 kDa. The highest thermal hysteresis activity (THA) observed was 0.62 °C. The secondary structure of WISPs was determined to be as follows: β-sheet: 49.33 %, random coil: 13.87 %, α-helix: 16.35 %, β-turn: 20.45 %. The study investigated the effects of different additions of WISPs on the water mobility, glass transition temperature, microstructure, rheological properties, and texture analysis of frozen-thawed dough. The results demonstrated that the inclusion of WISPs reduced the fluidity of water and water migration in the dough during the frozen-thawed cycle. This protective effect preserved the internal structure and gluten network of the dough, leading to increased viscosity, elasticity, and improved texture properties of the frozen-thawed dough. Furthermore, the addition of WISPs at concentrations ranging from 0 % to 0.7 % resulted in a 1.8 °C increase in the glass transition temperature (Tg). Overall, these findings suggest that WISPs can serve as a beneficial additive for enhancing the freeze–thaw stability of dough.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.