Sieve estimation of the accelerated mean model based on panel count data

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Statistical Planning and Inference Pub Date : 2024-11-12 DOI:10.1016/j.jspi.2024.106247
Xiaoyang Li , Zhi-Sheng Ye , Xingqiu Zhao
{"title":"Sieve estimation of the accelerated mean model based on panel count data","authors":"Xiaoyang Li ,&nbsp;Zhi-Sheng Ye ,&nbsp;Xingqiu Zhao","doi":"10.1016/j.jspi.2024.106247","DOIUrl":null,"url":null,"abstract":"<div><div>Panel count data are gathered when subjects are examined at discrete times during a study, and only the number of recurrent events occurring before each examination time is recorded. We consider a semiparametric accelerated mean model for panel count data in which the effect of the covariates is to transform the time scale of the baseline mean function. Semiparametric inference for the model is inherently challenging because the finite-dimensional regression parameters appear in the argument of the (infinite-dimensional) functional parameter, i.e., the baseline mean function, leading to the phenomenon of bundled parameters. We propose sieve pseudolikelihood and likelihood methods to construct the random criterion function for estimating the model parameters. An inexact block coordinate ascent algorithm is used to obtain these estimators. We establish the consistency and rate of convergence of the proposed estimators, as well as the asymptotic normality of the estimators of the regression parameters. Novel consistent estimators of the asymptotic covariances of the estimated regression parameters are derived by leveraging the counting process associated with the examination times. Comprehensive simulation studies demonstrate that the optimization algorithm is much less sensitive to the initial values than the Newton–Raphson method. The proposed estimators perform well for practical sample sizes, and are more efficient than existing methods. An example based on real data shows that due to this efficiency gain, the proposed method is better able to detect the significance of practically meaningful covariates than an existing method.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"237 ","pages":"Article 106247"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824001046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Panel count data are gathered when subjects are examined at discrete times during a study, and only the number of recurrent events occurring before each examination time is recorded. We consider a semiparametric accelerated mean model for panel count data in which the effect of the covariates is to transform the time scale of the baseline mean function. Semiparametric inference for the model is inherently challenging because the finite-dimensional regression parameters appear in the argument of the (infinite-dimensional) functional parameter, i.e., the baseline mean function, leading to the phenomenon of bundled parameters. We propose sieve pseudolikelihood and likelihood methods to construct the random criterion function for estimating the model parameters. An inexact block coordinate ascent algorithm is used to obtain these estimators. We establish the consistency and rate of convergence of the proposed estimators, as well as the asymptotic normality of the estimators of the regression parameters. Novel consistent estimators of the asymptotic covariances of the estimated regression parameters are derived by leveraging the counting process associated with the examination times. Comprehensive simulation studies demonstrate that the optimization algorithm is much less sensitive to the initial values than the Newton–Raphson method. The proposed estimators perform well for practical sample sizes, and are more efficient than existing methods. An example based on real data shows that due to this efficiency gain, the proposed method is better able to detect the significance of practically meaningful covariates than an existing method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于面板计数数据的加速平均模型的筛分估计
面板计数数据是在研究过程中对受试者进行离散时间检查时收集的数据,只记录每次检查时间之前发生的重复事件的数量。我们考虑了面板计数数据的半参数加速均值模型,其中协变量的作用是转换基线均值函数的时间尺度。由于有限维回归参数出现在(无限维)函数参数(即基线均值函数)的参数中,导致了捆绑参数现象,因此该模型的半参数推断本身就具有挑战性。我们提出了筛分伪似然法和似然法,以构建估计模型参数的随机准则函数。我们使用非精确块坐标上升算法来获得这些估计值。我们确定了所提出的估计值的一致性和收敛率,以及回归参数估计值的渐近正态性。通过利用与考试时间相关的计数过程,我们得出了估计回归参数渐近协方差的新一致估计值。综合模拟研究表明,优化算法对初始值的敏感度远低于牛顿-拉斐森方法。所提出的估计方法在实际样本量中表现良好,比现有方法更有效。一个基于真实数据的例子表明,由于效率的提高,所提出的方法比现有方法更能检测出具有实际意义的协变量的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
期刊最新文献
Estimation and group-feature selection in sparse mixture-of-experts with diverging number of parameters Semi-parametric empirical likelihood inference on quantile difference between two samples with length-biased and right-censored data Sieve estimation of the accelerated mean model based on panel count data The proximal bootstrap for constrained estimators Testing the equality of distributions using integrated maximum mean discrepancy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1