Zakawat Ali , Xiaochun Zhang , Palwasha Khan , Jie Li , Nai Zhang , Qixin Wang , Muhammad Yasin , Mazhar Amjad Gilani , Asim Laeeq Khan , Linglong Shan , Xiangping Zhang
{"title":"Self-assembled ILs-PVA micelle nanostructure impart the pervaporation membrane with high ethanol dehydration performance","authors":"Zakawat Ali , Xiaochun Zhang , Palwasha Khan , Jie Li , Nai Zhang , Qixin Wang , Muhammad Yasin , Mazhar Amjad Gilani , Asim Laeeq Khan , Linglong Shan , Xiangping Zhang","doi":"10.1016/j.memsci.2024.123481","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving strong interaction with the targeted composition and constructing abundant transport channels is crucial to obtain the pervaporation (PV) membrane with high selectivity and flux. Here, three ionic liquids (ILs) were screened out based on their relative selectivity and capacity targeting for bioethanol dehydration by COSMO-RS. The interaction energies analysis between ILs, EtOH, and H<sub>2</sub>O suggests that the ILs can form strong hydrogen bonds with water and disrupt the hydrogen bond in the EtOH–H<sub>2</sub>O azeotropic mixture, which is beneficial for improving the selectivity. Furthermore, driven by the multiple hydrogen bonds, electrostatic interactions, and van der Waals forces, ILs could self-assemble with polyvinyl alcohol (PVA) to fabricate the PV membrane with well-ordered micelle nanostructure, as its structure was revealed by MD simulations. The formation of the ILs-PVA micelle dramatically influenced membrane surface morphology, roughness, and water contact angle, providing an extra transport channel for the membrane. The optimal membrane (at the cmc point) exhibited a superior ethanol dehydration separation factor of 1627, along with a flux of 684 g/m<sup>2</sup>h at 50 °C. It can be expected that this novel self-assembled ILs-PVA micelle nanostructure strategy will find promising applications in other azeotropic mixture separation processes, like ethanol-ethyl acetate, water-butanol, etc.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123481"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010755","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving strong interaction with the targeted composition and constructing abundant transport channels is crucial to obtain the pervaporation (PV) membrane with high selectivity and flux. Here, three ionic liquids (ILs) were screened out based on their relative selectivity and capacity targeting for bioethanol dehydration by COSMO-RS. The interaction energies analysis between ILs, EtOH, and H2O suggests that the ILs can form strong hydrogen bonds with water and disrupt the hydrogen bond in the EtOH–H2O azeotropic mixture, which is beneficial for improving the selectivity. Furthermore, driven by the multiple hydrogen bonds, electrostatic interactions, and van der Waals forces, ILs could self-assemble with polyvinyl alcohol (PVA) to fabricate the PV membrane with well-ordered micelle nanostructure, as its structure was revealed by MD simulations. The formation of the ILs-PVA micelle dramatically influenced membrane surface morphology, roughness, and water contact angle, providing an extra transport channel for the membrane. The optimal membrane (at the cmc point) exhibited a superior ethanol dehydration separation factor of 1627, along with a flux of 684 g/m2h at 50 °C. It can be expected that this novel self-assembled ILs-PVA micelle nanostructure strategy will find promising applications in other azeotropic mixture separation processes, like ethanol-ethyl acetate, water-butanol, etc.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.