{"title":"Intersecting families of polynomials over finite fields","authors":"Nika Salia , Dávid Tóth","doi":"10.1016/j.ffa.2024.102540","DOIUrl":null,"url":null,"abstract":"<div><div>This paper demonstrates an analog of the Erdős–Ko–Rado theorem to polynomial rings over finite fields, affirmatively answering a conjecture of C. Tompkins.</div><div>A <em>k</em>-uniform family of subsets of a set of size <em>n</em> is <em>ℓ</em>-intersecting if any two subsets in the family intersect in at least <em>ℓ</em> elements. The study of such intersecting families is a core subject of extremal set theory, tracing its roots to the seminal 1961 Erdős–Ko–Rado theorem, which establishes a sharp upper bound on the size of these families. Here, we extend the Erdős–Ko–Rado theorem to polynomial rings over finite fields.</div><div>Specifically, we determine the largest possible size of a family of monic polynomials, each of degree <em>n</em>, over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where every pair of polynomials in the family shares a common factor of degree at least <em>ℓ</em>. We prove that the upper bound for this size is <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>ℓ</mi></mrow></msup></math></span> and characterize all extremal families that achieve this maximum size.</div><div>Extending to triple-intersecting families, where every triplet of polynomials shares a common factor of degree at least <em>ℓ</em>, we prove that only trivial families achieve the corresponding upper bound. Moreover, by relaxing the conditions to include polynomials of degree at most <em>n</em>, we affirm that only trivial families achieve the corresponding upper bound.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102540"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001795","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates an analog of the Erdős–Ko–Rado theorem to polynomial rings over finite fields, affirmatively answering a conjecture of C. Tompkins.
A k-uniform family of subsets of a set of size n is ℓ-intersecting if any two subsets in the family intersect in at least ℓ elements. The study of such intersecting families is a core subject of extremal set theory, tracing its roots to the seminal 1961 Erdős–Ko–Rado theorem, which establishes a sharp upper bound on the size of these families. Here, we extend the Erdős–Ko–Rado theorem to polynomial rings over finite fields.
Specifically, we determine the largest possible size of a family of monic polynomials, each of degree n, over a finite field , where every pair of polynomials in the family shares a common factor of degree at least ℓ. We prove that the upper bound for this size is and characterize all extremal families that achieve this maximum size.
Extending to triple-intersecting families, where every triplet of polynomials shares a common factor of degree at least ℓ, we prove that only trivial families achieve the corresponding upper bound. Moreover, by relaxing the conditions to include polynomials of degree at most n, we affirm that only trivial families achieve the corresponding upper bound.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.