Roger N. Bryant , Jordan P. Todes , Jocelyn A. Richardson , Tara C. Kalia , Anthony R. Prave , Aivo Lepland , Kalle Kirsimäe , Clara L. Blättler
{"title":"Local sedimentary effects shaped key sulfur records after the Great Oxidation Event","authors":"Roger N. Bryant , Jordan P. Todes , Jocelyn A. Richardson , Tara C. Kalia , Anthony R. Prave , Aivo Lepland , Kalle Kirsimäe , Clara L. Blättler","doi":"10.1016/j.epsl.2024.119113","DOIUrl":null,"url":null,"abstract":"<div><div>Our understanding of Earth's surface oxidant budget following the Great Oxidation Event (GOE) relies heavily on interpretations of carbon (δ<sup>13</sup>C) and sulfur (δ<sup>34</sup>S) isotope ratios. Isotopic data have been used to argue that a rise in marine sulfate concentrations to >10 mM during the GOE was followed by a sulfate reservoir ‘collapse’. However, carbonate δ<sup>34</sup>S and δ<sup>13</sup>C values often reflect conditions specific to depositional setting and diagenetic alteration. To assess the relative importance of global vs<em>.</em> local/diagenetic controls, we present δ<sup>34</sup>S, δ<sup>26</sup>Mg, δ<sup>44/40</sup>Ca, and trace-metal data coupled with existing δ<sup>13</sup>C data from the ca. 2.1–2.0 Ga Tulomozero Formation and the overlying Zaonega Formation in the Onega Basin (Karelia, Russia). Over this transitional interval, δ<sup>34</sup>S and Sr/(Ca+Mg) values increase whereas δ<sup>13</sup>C and δ<sup>44/40</sup>Ca values decrease. X-ray absorption spectroscopy shows that the dominant form of sulfur within the rocks concomitantly shifted from mineralized sulfate and carbonate-associated sulfate (CAS) to variable mixtures of sulfide, sulfonate, and CAS. Those changes are associated with a depositional shift from shallow-marine to deeper-marine slope settings. δ<sup>44/40</sup>Ca and Sr/(Ca+Mg) data indicate that depositional environmental changes drove a shift from seawater- to sediment-buffered carbonate recrystallization. Consequently, we interpret δ<sup>34</sup>S trends that closely match those reported by previous workers as reflecting changing local environmental and diagenetic conditions, a finding that renders equivocal the use of such trends to assess sulfur cycle changes following the GOE. Our work establishes a blueprint for how to obtain deeper insight into the evolution of Earth's surface oxidation from stable isotope records.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119113"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005454","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our understanding of Earth's surface oxidant budget following the Great Oxidation Event (GOE) relies heavily on interpretations of carbon (δ13C) and sulfur (δ34S) isotope ratios. Isotopic data have been used to argue that a rise in marine sulfate concentrations to >10 mM during the GOE was followed by a sulfate reservoir ‘collapse’. However, carbonate δ34S and δ13C values often reflect conditions specific to depositional setting and diagenetic alteration. To assess the relative importance of global vs. local/diagenetic controls, we present δ34S, δ26Mg, δ44/40Ca, and trace-metal data coupled with existing δ13C data from the ca. 2.1–2.0 Ga Tulomozero Formation and the overlying Zaonega Formation in the Onega Basin (Karelia, Russia). Over this transitional interval, δ34S and Sr/(Ca+Mg) values increase whereas δ13C and δ44/40Ca values decrease. X-ray absorption spectroscopy shows that the dominant form of sulfur within the rocks concomitantly shifted from mineralized sulfate and carbonate-associated sulfate (CAS) to variable mixtures of sulfide, sulfonate, and CAS. Those changes are associated with a depositional shift from shallow-marine to deeper-marine slope settings. δ44/40Ca and Sr/(Ca+Mg) data indicate that depositional environmental changes drove a shift from seawater- to sediment-buffered carbonate recrystallization. Consequently, we interpret δ34S trends that closely match those reported by previous workers as reflecting changing local environmental and diagenetic conditions, a finding that renders equivocal the use of such trends to assess sulfur cycle changes following the GOE. Our work establishes a blueprint for how to obtain deeper insight into the evolution of Earth's surface oxidation from stable isotope records.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.