A study on the particle emission from cobalt-free studded tires against road materials

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL Tribology International Pub Date : 2024-11-05 DOI:10.1016/j.triboint.2024.110365
Ulf Olofsson , Erik Holmström , Yezhe Lyu
{"title":"A study on the particle emission from cobalt-free studded tires against road materials","authors":"Ulf Olofsson ,&nbsp;Erik Holmström ,&nbsp;Yezhe Lyu","doi":"10.1016/j.triboint.2024.110365","DOIUrl":null,"url":null,"abstract":"<div><div>The use of studded tires can cause significant wear of road surfaces then also affect the air quality in urban areas. The studs of today’s studded tires are manufactured from hard metal containing cobalt. In this study, we investigated using alternative cobalt-free hard metal studs to reduce particulate emissions in the future. The tire-to-road interface is subjected to both impact wear and sliding abrasive wear. The alternative hard metal studs were evaluated in parallel with standard studs using two different laboratory test rigs specially designed for wear and particulate emission testing. Stone materials commonly used in the road tarmacadam were utilized as counter material. The results showed that the cobalt-free studs generated lower particle concentrations and less road wear.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110365"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011174","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of studded tires can cause significant wear of road surfaces then also affect the air quality in urban areas. The studs of today’s studded tires are manufactured from hard metal containing cobalt. In this study, we investigated using alternative cobalt-free hard metal studs to reduce particulate emissions in the future. The tire-to-road interface is subjected to both impact wear and sliding abrasive wear. The alternative hard metal studs were evaluated in parallel with standard studs using two different laboratory test rigs specially designed for wear and particulate emission testing. Stone materials commonly used in the road tarmacadam were utilized as counter material. The results showed that the cobalt-free studs generated lower particle concentrations and less road wear.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无钴有铆钉轮胎与路面材料的颗粒排放研究
使用带钉轮胎会对路面造成严重磨损,还会影响城市地区的空气质量。现在的有铆钉轮胎的铆钉是用含钴的硬金属制造的。在这项研究中,我们调查了使用替代性无钴硬金属钉来减少未来微粒排放的情况。轮胎与路面的接触面会受到冲击磨损和滑动磨料磨损。我们使用专门为磨损和颗粒排放测试设计的两种不同的实验室测试设备,对替代硬质金属螺柱和标准螺柱进行了平行评估。路面柏油路面常用的石料被用作反向材料。结果表明,无钴螺柱产生的颗粒浓度较低,路面磨损也较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
期刊最新文献
Enhancing high-temperature wear resistance by constructing the amorphous-crystal heterointerface structure in WO3/TiO2 composite coatings Probing the low friction mechanisms of WC/a-C films under low humidity conditions A Ni-Cu/CuPP composite coating with good wear resistance and long-term corrosion resistance for seawater applications Wetting properties of polymer additively manufactured surfaces – Multiscale and multi-technique study into the surface-measurement-function interactions Effect of inclusion on contact damage evolution of wind turbine gears based on configurational force theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1