{"title":"Numerical investigation into the mechanism of dust deposition on photovoltaic panels in the presence of an electrostatic dust barrier","authors":"Xiaohong Yan","doi":"10.1016/j.jweia.2025.106071","DOIUrl":null,"url":null,"abstract":"<div><div>The suppression of long-term suspended particle deposition remains a challenging problem. A strategy is proposed to suppress dust deposition by numerically predicting particle deposition behavior using the Eulerian-Lagrangian method. It has been observed that the deposition ratio increases with increasing ratio of gravity to drag force when an electrostatic barrier is not installed. However, when an electrostatic barrier is in place, particles are captured through both inertial and electrostatic mechanisms. The capture ratio of the electrostatic barrier increases with an increasing contribution of Coulomb force. The electrostatic mechanism results in a maximum enhancement of the capture ratio by about 50%. Additionally, the electrostatic barrier generates an air stream with low dust concentration, which effectively suppresses the dust deposition on the downstream PV panel under drag-force-dominant conditions. As a result, the surface dust concentration and the conversion efficiency loss of the PV panel can be maximally suppressed by about 90%.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"261 ","pages":"Article 106071"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000674","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The suppression of long-term suspended particle deposition remains a challenging problem. A strategy is proposed to suppress dust deposition by numerically predicting particle deposition behavior using the Eulerian-Lagrangian method. It has been observed that the deposition ratio increases with increasing ratio of gravity to drag force when an electrostatic barrier is not installed. However, when an electrostatic barrier is in place, particles are captured through both inertial and electrostatic mechanisms. The capture ratio of the electrostatic barrier increases with an increasing contribution of Coulomb force. The electrostatic mechanism results in a maximum enhancement of the capture ratio by about 50%. Additionally, the electrostatic barrier generates an air stream with low dust concentration, which effectively suppresses the dust deposition on the downstream PV panel under drag-force-dominant conditions. As a result, the surface dust concentration and the conversion efficiency loss of the PV panel can be maximally suppressed by about 90%.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.