Evolution of mechanical behavior in granular soil during fine particle loss simulated by salt dissolution: Insights from ring shear tests

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Engineering Geology Pub Date : 2024-11-09 DOI:10.1016/j.enggeo.2024.107790
Li Zhou , Yangshuai Zheng , Wei Hu , Yan Li , Hui Luo , Gonghui Wang
{"title":"Evolution of mechanical behavior in granular soil during fine particle loss simulated by salt dissolution: Insights from ring shear tests","authors":"Li Zhou ,&nbsp;Yangshuai Zheng ,&nbsp;Wei Hu ,&nbsp;Yan Li ,&nbsp;Hui Luo ,&nbsp;Gonghui Wang","doi":"10.1016/j.enggeo.2024.107790","DOIUrl":null,"url":null,"abstract":"<div><div>Fine particle loss in soil is one of the main causes of slope instability and geotechnical structure failure. Loss of fines can cause instability in granular assembles by changing the fabric and microstructure of the sample. However, real-time monitoring of the evolution of mechanical behavior in granular soils during the particle loss process is still poorly explored. This study presents a novel approach by simulating fine particle loss through salt dissolution in ring-shear tests, offering real-time insights into the mechanical evolution of granular soils under realistic stress conditions. Meanwhile, the shear resistance, shear displacement, vertical displacement, salt content, and acoustic emissions were simultaneously recorded. The test results showed that the instability of the sample was triggered by the loss of fine particles. With a gradual loss of fine particles, both the vertical and shear deformations and the void ratio increased. The evolution of shear resistance in the sample can be divided into three stages: stress weakening, then strengthening, and finally recovery to the initial value. We infer that the evolution of shear resistance originated from the collapse and rearrangement of its granular fabric and microstructure. Additional evidence for this hypothesis was provided by high-frequency acoustic emissions (approximately 150 kHz), suggesting buckling of the force chains accompanying the particle loss process. Furthermore, the sample experienced greater shear deformations and stress weakening that developed under a larger initial fine content or a higher normal stress. This finding may provide valuable insights into the mechanical behavior of granular soil during the fine particle loss process.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"343 ","pages":"Article 107790"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003909","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fine particle loss in soil is one of the main causes of slope instability and geotechnical structure failure. Loss of fines can cause instability in granular assembles by changing the fabric and microstructure of the sample. However, real-time monitoring of the evolution of mechanical behavior in granular soils during the particle loss process is still poorly explored. This study presents a novel approach by simulating fine particle loss through salt dissolution in ring-shear tests, offering real-time insights into the mechanical evolution of granular soils under realistic stress conditions. Meanwhile, the shear resistance, shear displacement, vertical displacement, salt content, and acoustic emissions were simultaneously recorded. The test results showed that the instability of the sample was triggered by the loss of fine particles. With a gradual loss of fine particles, both the vertical and shear deformations and the void ratio increased. The evolution of shear resistance in the sample can be divided into three stages: stress weakening, then strengthening, and finally recovery to the initial value. We infer that the evolution of shear resistance originated from the collapse and rearrangement of its granular fabric and microstructure. Additional evidence for this hypothesis was provided by high-frequency acoustic emissions (approximately 150 kHz), suggesting buckling of the force chains accompanying the particle loss process. Furthermore, the sample experienced greater shear deformations and stress weakening that developed under a larger initial fine content or a higher normal stress. This finding may provide valuable insights into the mechanical behavior of granular soil during the fine particle loss process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐溶解模拟细颗粒流失过程中颗粒土力学行为的演变:环剪试验的启示
土壤中的细颗粒流失是导致边坡失稳和岩土结构破坏的主要原因之一。细颗粒的流失会改变样品的结构和微观结构,从而导致颗粒集合体的不稳定性。然而,对颗粒流失过程中粒状土力学行为演变的实时监测研究还很少。本研究提出了一种新方法,即在环剪试验中模拟盐溶解造成的细颗粒流失,从而实时了解颗粒土在实际应力条件下的力学演变。与此同时,还同时记录了剪切阻力、剪切位移、垂直位移、盐含量和声发射。试验结果表明,样品的不稳定性是由细颗粒的流失引发的。随着细颗粒的逐渐流失,垂直变形和剪切变形以及空隙率都在增加。样品抗剪性能的演变可分为三个阶段:应力减弱,然后增强,最后恢复到初始值。我们推断剪切阻力的演变源于其颗粒结构和微观结构的坍塌和重新排列。高频声发射(约 150 kHz)为这一假设提供了更多证据,表明在颗粒损失过程中伴随着力链的屈曲。此外,在初始细粒含量较大或法向应力较高的情况下,样品会发生更大的剪切变形和应力削弱。这一发现可能会对细颗粒流失过程中颗粒土的力学行为提供有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
期刊最新文献
In-situ and experimental investigations of the failure characteristics of surrounding rock through granites with biotite interlayers in a tunnel Evolution characteristics of mining-induced fractures in overburden strata under close-multi coal seams mining based on optical fiber monitoring Evaluating the chain of uncertainties in the 3D geological modelling workflow Thermal and mechanical impact of artificial ground-freezing on deep excavation stability in Nakdong River Deltaic deposits Large-scale geohazards risk of submarine landslides considering the subsea cables vulnerability: A case study from the northern continental slopes of South China Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1