A deep learning model for predicting the modified micro-dosimetric kinetic model-based dose and the dose-averaged linear energy transfer for prostate cancer in carbon ion therapy

Liwen Zhang , Weiwei Wang , Ping Li , Qing Zhang , Rongcheng Han
{"title":"A deep learning model for predicting the modified micro-dosimetric kinetic model-based dose and the dose-averaged linear energy transfer for prostate cancer in carbon ion therapy","authors":"Liwen Zhang ,&nbsp;Weiwei Wang ,&nbsp;Ping Li ,&nbsp;Qing Zhang ,&nbsp;Rongcheng Han","doi":"10.1016/j.phro.2024.100671","DOIUrl":null,"url":null,"abstract":"<div><div>Adaptive carbon ion radiotherapy for localized prostate cancer requires accurate evaluation of biological dose and dose-averaged linear energy transfer (LET<sub>d</sub>) changes. This study developed a deep learning model to rapidly predict the modified micro-dosimetric kinetic model (mMKM)-based dose and LET<sub>d</sub> distributions. Using data from fifty patients for training and testing, the model achieved gamma passing rates exceeding 96% compared to true mMKM-based dose and LET<sub>d</sub> recalculated from local effect model I (LEM I) plans. Incorporating computed tomography images, contours, physical dose, and LEM I-based dose as inputs, this model provided a rapid, accurate tool for comprehensive evaluations.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"32 ","pages":"Article 100671"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive carbon ion radiotherapy for localized prostate cancer requires accurate evaluation of biological dose and dose-averaged linear energy transfer (LETd) changes. This study developed a deep learning model to rapidly predict the modified micro-dosimetric kinetic model (mMKM)-based dose and LETd distributions. Using data from fifty patients for training and testing, the model achieved gamma passing rates exceeding 96% compared to true mMKM-based dose and LETd recalculated from local effect model I (LEM I) plans. Incorporating computed tomography images, contours, physical dose, and LEM I-based dose as inputs, this model provided a rapid, accurate tool for comprehensive evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测碳离子疗法中前列腺癌的改良微剂量动力学模型剂量和剂量平均线性能量转移的深度学习模型
针对局部前列腺癌的自适应碳离子放疗需要准确评估生物剂量和剂量平均线性能量传递(LETd)的变化。本研究开发了一种深度学习模型,用于快速预测基于修正微剂量动力学模型(mMKM)的剂量和线性能量传递分布。利用 50 名患者的数据进行训练和测试,与根据局部效应模型 I(LEM I)计划重新计算的基于 mMKM 的真实剂量和 LETd 相比,该模型的伽马通过率超过 96%。该模型将计算机断层扫描图像、等值线、物理剂量和基于 LEM I 的剂量作为输入,为综合评估提供了快速、准确的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography Automatic segmentation for magnetic resonance imaging guided individual elective lymph node irradiation in head and neck cancer patients Development of a novel 3D-printed dynamic anthropomorphic thorax phantom for evaluation of four-dimensional computed tomography Technical feasibility of delivering a simultaneous integrated boost in partial breast irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1