On the two approaches for the combustion instability predictions in a long-flame combustor

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2024-11-12 DOI:10.1016/j.actaastro.2024.10.069
Xiaokang Liu , Xiaolin Xiang , Xiaoyu Yu , Qingfei Fu , Lijun Yang , Jingxuan Li
{"title":"On the two approaches for the combustion instability predictions in a long-flame combustor","authors":"Xiaokang Liu ,&nbsp;Xiaolin Xiang ,&nbsp;Xiaoyu Yu ,&nbsp;Qingfei Fu ,&nbsp;Lijun Yang ,&nbsp;Jingxuan Li","doi":"10.1016/j.actaastro.2024.10.069","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a detailed comparative analysis and discussion of two typical predictive methods for combustion instability in long flame combustion chambers: the coupled method and the decoupled method. Using large eddy simulation (LES), the coupled method directly predicts stability in typical long flame combustion chambers. In the decoupled method, stability in the combustion chamber is predicted by combining a low-order acoustic network for long flames with flame responses and mean parameters from numerical simulations. The research results indicate that the coupled method provides full-field information, while the decoupled method neglects certain factors, such as the coupling between combustion and acoustics. However, the decoupled method can directly determine combustion instability based on the growth rate of oscillation modes. The flow field undergoes periodic changes, with the region of fluctuation in the combustion heat release rate gradually increasing, resembling vortex development, which ruptures upon encountering the wall due to radial constraints. Furthermore, in the decoupled method, the periodic changes in the flow field are controlled by the frequency of incoming flow disturbances, whereas in the coupled method, they are controlled by the acoustic frequency of the combustion chamber. In the coupled method, the coupling among disturbances and the acoustic disturbances at the boundaries amplifies the disturbances, causing the radial scale of the fluctuation region in the combustion heat release rate to increase along the axial direction and approach a fixed value faster than in the decoupled method.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 814-826"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009457652400643X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a detailed comparative analysis and discussion of two typical predictive methods for combustion instability in long flame combustion chambers: the coupled method and the decoupled method. Using large eddy simulation (LES), the coupled method directly predicts stability in typical long flame combustion chambers. In the decoupled method, stability in the combustion chamber is predicted by combining a low-order acoustic network for long flames with flame responses and mean parameters from numerical simulations. The research results indicate that the coupled method provides full-field information, while the decoupled method neglects certain factors, such as the coupling between combustion and acoustics. However, the decoupled method can directly determine combustion instability based on the growth rate of oscillation modes. The flow field undergoes periodic changes, with the region of fluctuation in the combustion heat release rate gradually increasing, resembling vortex development, which ruptures upon encountering the wall due to radial constraints. Furthermore, in the decoupled method, the periodic changes in the flow field are controlled by the frequency of incoming flow disturbances, whereas in the coupled method, they are controlled by the acoustic frequency of the combustion chamber. In the coupled method, the coupling among disturbances and the acoustic disturbances at the boundaries amplifies the disturbances, causing the radial scale of the fluctuation region in the combustion heat release rate to increase along the axial direction and approach a fixed value faster than in the decoupled method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长火焰燃烧器燃烧不稳定性预测的两种方法
本文详细比较分析和讨论了两种典型的长火焰燃烧室燃烧不稳定性预测方法:耦合法和解耦法。耦合法使用大涡模拟(LES)直接预测典型长火焰燃烧室的稳定性。在解耦方法中,燃烧室的稳定性是通过结合长火焰的低阶声学网络、火焰响应和数值模拟的平均参数来预测的。研究结果表明,耦合方法提供了全场信息,而解耦方法忽略了某些因素,如燃烧与声学之间的耦合。然而,解耦方法可以根据振荡模式的增长率直接判断燃烧的不稳定性。流场发生周期性变化,燃烧放热率的波动区域逐渐增大,类似于涡旋的发展,由于径向约束,涡旋在遇到壁面时会破裂。此外,在去耦合方法中,流场的周期性变化由流入的流动扰动频率控制,而在耦合方法中,则由燃烧室的声学频率控制。在耦合法中,扰动和边界处的声学扰动之间的耦合放大了扰动,导致燃烧热释放率波动区域的径向尺度沿轴向增加,并比解耦法更快地接近固定值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
Studies on the effect of working fluid and the geometric design of airfoils on the aerodynamic performance of air vehicles operating in Martian atmosphere Generalized Gaussian smoothing homotopy method for solving nonlinear optimal control problems Fast recovery mode for micro-meteoroid impacts: A LISA mission study Algorithms for encoding interstellar messages Composition optimization of a hypergolic green propellant based on monoethanolamine, n-butanol and 90% hydrogen peroxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1