Dowon Jang, Younghwon Kim, Jaehun Lee, Hyunsub Shin, Misook Kang
{"title":"Dual-functional Cu-Fe Co-Doped TiO₂ photocatalyst for efficient hydrogen production and phenol degradation","authors":"Dowon Jang, Younghwon Kim, Jaehun Lee, Hyunsub Shin, Misook Kang","doi":"10.1016/j.surfin.2024.105394","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel dual-functional photocatalyst, Cu-Fe co-doped TiO₂, that simultaneously addresses two critical global challenges: environmental pollution and sustainable energy production. Unlike most existing research focused on a single functionality, this study explores the synergistic effects of Cu and Fe doping on TiO₂, leading to simultaneous phenol degradation and hydrogen production under visible light irradiation. The 5Cu5Fe-TiO₂ photocatalyst, co-doped with 5 wt.% Cu and 5 wt.% Fe, exhibited outstanding performance, degrading 10 ppm of phenol within 6 h while generating 680 μmol/g of hydrogen. The catalyst showed remarkable stability over five recycling cycles without loss of efficiency. The Fe component significantly narrowed the TiO₂ bandgap, enhancing light absorption in the visible region, while the Cu component contributed to the formation of heterojunctions and surface plasmon resonance (SPR) effects, promoting efficient charge separation. These combined effects create a highly effective charge transfer mechanism, making the catalyst a promising solution for both environmental remediation and renewable energy generation. This work offers a cost-effective and scalable approach to dual-functional photocatalysis, opening up new avenues for sustainable technology development.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105394"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015505","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel dual-functional photocatalyst, Cu-Fe co-doped TiO₂, that simultaneously addresses two critical global challenges: environmental pollution and sustainable energy production. Unlike most existing research focused on a single functionality, this study explores the synergistic effects of Cu and Fe doping on TiO₂, leading to simultaneous phenol degradation and hydrogen production under visible light irradiation. The 5Cu5Fe-TiO₂ photocatalyst, co-doped with 5 wt.% Cu and 5 wt.% Fe, exhibited outstanding performance, degrading 10 ppm of phenol within 6 h while generating 680 μmol/g of hydrogen. The catalyst showed remarkable stability over five recycling cycles without loss of efficiency. The Fe component significantly narrowed the TiO₂ bandgap, enhancing light absorption in the visible region, while the Cu component contributed to the formation of heterojunctions and surface plasmon resonance (SPR) effects, promoting efficient charge separation. These combined effects create a highly effective charge transfer mechanism, making the catalyst a promising solution for both environmental remediation and renewable energy generation. This work offers a cost-effective and scalable approach to dual-functional photocatalysis, opening up new avenues for sustainable technology development.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)