Dual-functional Cu-Fe Co-Doped TiO₂ photocatalyst for efficient hydrogen production and phenol degradation

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Surfaces and Interfaces Pub Date : 2024-11-08 DOI:10.1016/j.surfin.2024.105394
Dowon Jang, Younghwon Kim, Jaehun Lee, Hyunsub Shin, Misook Kang
{"title":"Dual-functional Cu-Fe Co-Doped TiO₂ photocatalyst for efficient hydrogen production and phenol degradation","authors":"Dowon Jang,&nbsp;Younghwon Kim,&nbsp;Jaehun Lee,&nbsp;Hyunsub Shin,&nbsp;Misook Kang","doi":"10.1016/j.surfin.2024.105394","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel dual-functional photocatalyst, Cu-Fe co-doped TiO₂, that simultaneously addresses two critical global challenges: environmental pollution and sustainable energy production. Unlike most existing research focused on a single functionality, this study explores the synergistic effects of Cu and Fe doping on TiO₂, leading to simultaneous phenol degradation and hydrogen production under visible light irradiation. The 5Cu5Fe-TiO₂ photocatalyst, co-doped with 5 wt.% Cu and 5 wt.% Fe, exhibited outstanding performance, degrading 10 ppm of phenol within 6 h while generating 680 μmol/g of hydrogen. The catalyst showed remarkable stability over five recycling cycles without loss of efficiency. The Fe component significantly narrowed the TiO₂ bandgap, enhancing light absorption in the visible region, while the Cu component contributed to the formation of heterojunctions and surface plasmon resonance (SPR) effects, promoting efficient charge separation. These combined effects create a highly effective charge transfer mechanism, making the catalyst a promising solution for both environmental remediation and renewable energy generation. This work offers a cost-effective and scalable approach to dual-functional photocatalysis, opening up new avenues for sustainable technology development.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105394"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015505","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel dual-functional photocatalyst, Cu-Fe co-doped TiO₂, that simultaneously addresses two critical global challenges: environmental pollution and sustainable energy production. Unlike most existing research focused on a single functionality, this study explores the synergistic effects of Cu and Fe doping on TiO₂, leading to simultaneous phenol degradation and hydrogen production under visible light irradiation. The 5Cu5Fe-TiO₂ photocatalyst, co-doped with 5 wt.% Cu and 5 wt.% Fe, exhibited outstanding performance, degrading 10 ppm of phenol within 6 h while generating 680 μmol/g of hydrogen. The catalyst showed remarkable stability over five recycling cycles without loss of efficiency. The Fe component significantly narrowed the TiO₂ bandgap, enhancing light absorption in the visible region, while the Cu component contributed to the formation of heterojunctions and surface plasmon resonance (SPR) effects, promoting efficient charge separation. These combined effects create a highly effective charge transfer mechanism, making the catalyst a promising solution for both environmental remediation and renewable energy generation. This work offers a cost-effective and scalable approach to dual-functional photocatalysis, opening up new avenues for sustainable technology development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效制氢和苯酚降解的 Cu-Fe 共掺 TiO₂ 双功能光催化剂
本研究提出了一种新型双功能光催化剂--Cu-Fe 共掺杂 TiO₂,可同时应对环境污染和可持续能源生产这两大全球性挑战。与大多数侧重于单一功能的现有研究不同,本研究探讨了 TiO₂ 上掺杂铜和铁的协同效应,从而在可见光照射下同时实现苯酚降解和制氢。共同掺杂了 5 wt.% Cu 和 5 wt.% Fe 的 5Cu5Fe-TiO₂ 光催化剂表现出卓越的性能,可在 6 小时内降解 10 ppm 的苯酚,同时产生 680 μmol/g 的氢气。该催化剂在五个循环周期内表现出极高的稳定性,而不会降低效率。铁成分大大缩小了 TiO₂的带隙,增强了可见光区的光吸收,而铜成分则有助于形成异质结和表面等离子体共振(SPR)效应,促进有效的电荷分离。这些综合效应形成了一种高效的电荷转移机制,使该催化剂成为环境修复和可再生能源发电的理想解决方案。这项研究为双功能光催化提供了一种具有成本效益且可扩展的方法,为可持续技术开发开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
期刊最新文献
Understanding the role of sodium lignosulphonate on obstructing the aggregation of fine serpentine particles on to the hydrophobized pyrite surface Hydrophobic/hydrophilic surfaces constructed using laser spraying: A new route Anisotropic fluorescence surface quenching of quantum dot-in-rods on silver nanopatterned film Three-dimensionally assembled polyelectrolyte multilayers-functionalized silica nanowire membrane for highly-efficient adsorptive separation of copper ions from water Releasing charge transport barriers at low bias in perpendicularly aligned 2D halide perovskite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1