Juan Martinez-Carranza , Jose Martinez-Carranza , Tomasz Kozacki
{"title":"Efficient point cloud occlusion method for ultra wide-angle computer-generated holograms","authors":"Juan Martinez-Carranza , Jose Martinez-Carranza , Tomasz Kozacki","doi":"10.1016/j.optlaseng.2024.108678","DOIUrl":null,"url":null,"abstract":"<div><div>Holographic Near Eye Displays (HNEDs) are meant to be the next generation of electronic devices that enable projecting three-dimensional images directly to the eyes. This is possible because computer-generated holograms (CGHs), the backbone of HNEDs, encode accurate wavefront information from virtual objects. An immersive experience requires that these CGHs can reproduce large and highly detailed objects. Moreover, an occlusion culling algorithm is necessary to remove back surfaces that do not contribute to the scene, which provides a better sense of reality. Although there is a vast family of occlusion culling methods, none of these, to the best of our knowledge, consider occlusion when calculating CGHs for field of views (FoV) larger than 90° This work proposes a point cloud occlusion culling method for CGHs that projects images with angles larger than 90° Our approach is based on the geometry of the non-pupil Near Eye Display configuration. It is shown that this configuration provides the proper geometrical conditions that can be used for setting fast occlusion culling of unwanted back points. Occlusion culling with our method is carried out with clouds larger than 7-million-point sources and CGHs resolution of 4 K and 8K. It is demonstrated that our method is at least 5 times faster than current solutions. Furthermore, occluded clouds are used for calculating CGHs that are numerically and optically reconstructed. The obtained results confirm that our method provides high-quality occluded clouds, enabling high-quality production of CGHs with large FoV.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108678"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006560","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Holographic Near Eye Displays (HNEDs) are meant to be the next generation of electronic devices that enable projecting three-dimensional images directly to the eyes. This is possible because computer-generated holograms (CGHs), the backbone of HNEDs, encode accurate wavefront information from virtual objects. An immersive experience requires that these CGHs can reproduce large and highly detailed objects. Moreover, an occlusion culling algorithm is necessary to remove back surfaces that do not contribute to the scene, which provides a better sense of reality. Although there is a vast family of occlusion culling methods, none of these, to the best of our knowledge, consider occlusion when calculating CGHs for field of views (FoV) larger than 90° This work proposes a point cloud occlusion culling method for CGHs that projects images with angles larger than 90° Our approach is based on the geometry of the non-pupil Near Eye Display configuration. It is shown that this configuration provides the proper geometrical conditions that can be used for setting fast occlusion culling of unwanted back points. Occlusion culling with our method is carried out with clouds larger than 7-million-point sources and CGHs resolution of 4 K and 8K. It is demonstrated that our method is at least 5 times faster than current solutions. Furthermore, occluded clouds are used for calculating CGHs that are numerically and optically reconstructed. The obtained results confirm that our method provides high-quality occluded clouds, enabling high-quality production of CGHs with large FoV.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques