Xiangyu Wang , Lei Zhu , Qi Zhang , Liang Yang , Min Tang , Fei Xiao , Xiaodong Wang , Shiyang Shen , Lanqiang Zhang , Youming Guo
{"title":"Femtosecond laser processing with aberration correction based on Shack-Hartmann wavefront sensor","authors":"Xiangyu Wang , Lei Zhu , Qi Zhang , Liang Yang , Min Tang , Fei Xiao , Xiaodong Wang , Shiyang Shen , Lanqiang Zhang , Youming Guo","doi":"10.1016/j.optlaseng.2024.108693","DOIUrl":null,"url":null,"abstract":"<div><div>Optical aberrations are critical for high-precision and large-depth fabrication of femtosecond lasers in transparent media. Some approaches have been demonstrated to correct these aberrations, such as calculated formulas, iterative algorithms for phase retrieval, and neural networks. However, these approaches have a few drawbacks, such as insufficient aberration correction and a lack of real-time operation, limiting the processing depth and performance of the device. Thus, this study demonstrated an aberration correction scheme with direct wavefront sensing. The aberrations during processing at different depths, from 100 to 600 μm, were measured using a Shack-Hartmann wavefront sensor. As a guide star, this sensor used the supercontinuum emitted by the plasma, which is generated by multiphoton absorption and avalanche effects in the focal region. A liquid-crystal spatial light modulator (SLM) effectively compensated the aberrations. Voxels with a constant aspect ratio of 2.82–2.91 were fabricated in different depths, significantly lower than the aspect ratio of 4.46–19.5 with uncorrected aberrations. This technology allows the precise fabrication of three-dimensional photonic devices consisting of curved waveguides at continuously different depths and improves the throughput of laser processing.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108693"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical aberrations are critical for high-precision and large-depth fabrication of femtosecond lasers in transparent media. Some approaches have been demonstrated to correct these aberrations, such as calculated formulas, iterative algorithms for phase retrieval, and neural networks. However, these approaches have a few drawbacks, such as insufficient aberration correction and a lack of real-time operation, limiting the processing depth and performance of the device. Thus, this study demonstrated an aberration correction scheme with direct wavefront sensing. The aberrations during processing at different depths, from 100 to 600 μm, were measured using a Shack-Hartmann wavefront sensor. As a guide star, this sensor used the supercontinuum emitted by the plasma, which is generated by multiphoton absorption and avalanche effects in the focal region. A liquid-crystal spatial light modulator (SLM) effectively compensated the aberrations. Voxels with a constant aspect ratio of 2.82–2.91 were fabricated in different depths, significantly lower than the aspect ratio of 4.46–19.5 with uncorrected aberrations. This technology allows the precise fabrication of three-dimensional photonic devices consisting of curved waveguides at continuously different depths and improves the throughput of laser processing.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques