Convolutional sparse coding network for sparse seismic time-frequency representation

Qiansheng Wei , Zishuai Li , Haonan Feng , Yueying Jiang , Yang Yang , Zhiguo Wang
{"title":"Convolutional sparse coding network for sparse seismic time-frequency representation","authors":"Qiansheng Wei ,&nbsp;Zishuai Li ,&nbsp;Haonan Feng ,&nbsp;Yueying Jiang ,&nbsp;Yang Yang ,&nbsp;Zhiguo Wang","doi":"10.1016/j.aiig.2024.100104","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic time-frequency (TF) transforms are essential tools in reservoir interpretation and signal processing, particularly for characterizing frequency variations in non-stationary seismic data. Recently, sparse TF transforms, which leverage sparse coding (SC), have gained significant attention in the geosciences due to their ability to achieve high TF resolution. However, the iterative approaches typically employed in sparse TF transforms are computationally intensive, making them impractical for real seismic data analysis. To address this issue, we propose an interpretable convolutional sparse coding (CSC) network to achieve high TF resolution. The proposed model is generated based on the traditional short-time Fourier transform (STFT) transform and a modified UNet, named ULISTANet. In this design, we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm (LISTA) blocks, a specialized form of CSC. The LISTA block, which evolves from the traditional iterative shrinkage thresholding algorithm (ISTA), is optimized for extracting sparse features more effectively. Furthermore, we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet. Finally, the proposed method's performance is subsequently validated using both synthetic and field data, demonstrating its potential for enhanced seismic data analysis.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100104"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544124000455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic time-frequency (TF) transforms are essential tools in reservoir interpretation and signal processing, particularly for characterizing frequency variations in non-stationary seismic data. Recently, sparse TF transforms, which leverage sparse coding (SC), have gained significant attention in the geosciences due to their ability to achieve high TF resolution. However, the iterative approaches typically employed in sparse TF transforms are computationally intensive, making them impractical for real seismic data analysis. To address this issue, we propose an interpretable convolutional sparse coding (CSC) network to achieve high TF resolution. The proposed model is generated based on the traditional short-time Fourier transform (STFT) transform and a modified UNet, named ULISTANet. In this design, we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm (LISTA) blocks, a specialized form of CSC. The LISTA block, which evolves from the traditional iterative shrinkage thresholding algorithm (ISTA), is optimized for extracting sparse features more effectively. Furthermore, we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet. Finally, the proposed method's performance is subsequently validated using both synthetic and field data, demonstrating its potential for enhanced seismic data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于稀疏地震时频表示的卷积稀疏编码网络
地震时频(TF)变换是储层解释和信号处理的重要工具,特别是用于描述非稳态地震数据中的频率变化。最近,利用稀疏编码(SC)的稀疏时频变换因其实现高时频分辨率的能力而在地球科学领域备受关注。然而,稀疏 TF 变换通常采用的迭代方法需要大量计算,因此在实际地震数据分析中并不实用。为解决这一问题,我们提出了一种可解释卷积稀疏编码(CSC)网络,以实现高 TF 分辨率。我们提出的模型是基于传统的短时傅立叶变换(STFT)和改进的 UNet(名为 ULISTANet)生成的。在这一设计中,我们用可学习的迭代收缩阈值算法(LISTA)块(一种专门的 CSC 形式)取代了 UNet 的传统卷积层。LISTA 块由传统的迭代收缩阈值算法(ISTA)演化而来,经过优化,能更有效地提取稀疏特征。此外,我们还创建了一个以复杂频率调制信号为特征的合成数据集来训练 ULISTANet。最后,我们利用合成数据和野外数据对所提出方法的性能进行了验证,证明了该方法在增强地震数据分析方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1