Deep dehumidification characteristics of a silica gel coated cross-flow heat exchanger with a circulating blowing loop

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2024-11-03 DOI:10.1016/j.enbuild.2024.114991
Lin Liu , Hongyu Huang , Jun Li , Yu Bai , Zhaohong He , Lisheng Deng , Tieyu Gao , Mitsuhiro Kubota , Noriyuki Kobayashi
{"title":"Deep dehumidification characteristics of a silica gel coated cross-flow heat exchanger with a circulating blowing loop","authors":"Lin Liu ,&nbsp;Hongyu Huang ,&nbsp;Jun Li ,&nbsp;Yu Bai ,&nbsp;Zhaohong He ,&nbsp;Lisheng Deng ,&nbsp;Tieyu Gao ,&nbsp;Mitsuhiro Kubota ,&nbsp;Noriyuki Kobayashi","doi":"10.1016/j.enbuild.2024.114991","DOIUrl":null,"url":null,"abstract":"<div><div>Solid desiccant dehumidification systems offer an effective and energy-efficient alternative for deeply dehumidifying air. Desiccant coated heat exchangers (DCHEs), a type of solid desiccant dehumidification system, have garnered attention due to their ability to eliminate adsorption heat and thereby enhance dehumidification capacity, unlike desiccant wheels that perform adiabatic dehumidification. This study introduces a silica gel coated cross-flow DCHE equipped with a circulating blowing loop for deep dehumidification applications. A two-dimensional numerical model is developed to simulate deep dehumidification behavior of the DCHE. Parametric analysis is performed to explore the dehumidification characteristics under various conditions, setting different volume fractions <span><math><mi>ω</mi></math></span> of blowing loop air. Results indicate that the DCHE can effectively reduce the moisture content of humid air to a deep dehumidification threshold of 6.2 g/kg. Additionally, dehumidification capacity can be increased by incorporating a circulating blowing loop. The influence of process air velocity, cooling air velocity, process air humidity ratio, regeneration air temperature and air channel length on the dehumidification performance are analyzed, focusing on metrics such as minimum outlet air humidity ratio <span><math><msub><mi>Y</mi><mrow><mi>a</mi><mn>1</mn><mo>,</mo><mi>a</mi><mi>d</mi><mo>,</mo><mi>o</mi><mi>u</mi><mi>t</mi><mi>_</mi><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span>, effective deep dehumidification time <span><math><msub><mi>t</mi><mrow><mi>eff</mi></mrow></msub></math></span>, moisture removal capacity <span><math><mrow><mi>MRC</mi></mrow></math></span> and dehumidification coefficient of performance <span><math><mrow><mi>DCOP</mi></mrow></math></span>. It is determined that the regeneration air temperature should be raised to 80 °C to ensure deep dehumidification, and an air channel length of 0.2 m is optimal.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"325 ","pages":"Article 114991"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824011071","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid desiccant dehumidification systems offer an effective and energy-efficient alternative for deeply dehumidifying air. Desiccant coated heat exchangers (DCHEs), a type of solid desiccant dehumidification system, have garnered attention due to their ability to eliminate adsorption heat and thereby enhance dehumidification capacity, unlike desiccant wheels that perform adiabatic dehumidification. This study introduces a silica gel coated cross-flow DCHE equipped with a circulating blowing loop for deep dehumidification applications. A two-dimensional numerical model is developed to simulate deep dehumidification behavior of the DCHE. Parametric analysis is performed to explore the dehumidification characteristics under various conditions, setting different volume fractions ω of blowing loop air. Results indicate that the DCHE can effectively reduce the moisture content of humid air to a deep dehumidification threshold of 6.2 g/kg. Additionally, dehumidification capacity can be increased by incorporating a circulating blowing loop. The influence of process air velocity, cooling air velocity, process air humidity ratio, regeneration air temperature and air channel length on the dehumidification performance are analyzed, focusing on metrics such as minimum outlet air humidity ratio Ya1,ad,out_min, effective deep dehumidification time teff, moisture removal capacity MRC and dehumidification coefficient of performance DCOP. It is determined that the regeneration air temperature should be raised to 80 °C to ensure deep dehumidification, and an air channel length of 0.2 m is optimal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有循环吹风回路的硅胶涂层横流热交换器的深度除湿特性
固体干燥剂除湿系统为深度除湿空气提供了一种高效节能的替代方法。干燥剂涂层热交换器(DCHE)是固体干燥剂除湿系统的一种,与进行绝热除湿的干燥剂转轮不同,它能够消除吸附热,从而提高除湿能力,因此备受关注。本研究介绍了一种配备循环吹风回路的硅胶涂层横流 DCHE,用于深度除湿。开发了一个二维数值模型来模拟 DCHE 的深度除湿行为。通过参数分析,探讨了在不同条件下的除湿特性,并设置了不同的吹风回路空气体积分数ω。结果表明,DCHE 可以有效地将潮湿空气中的水分含量降低到 6.2 g/kg 的深度除湿阈值。此外,通过加入循环吹风回路,还能提高除湿能力。分析了工艺风速、冷却风速、工艺空气湿度比、再生空气温度和空气通道长度对除湿性能的影响,重点是最小出口空气湿度比 Ya1,ad,out_min、有效深度除湿时间 teff、除湿能力 MRC 和除湿性能系数 DCOP 等指标。结果表明,要确保深度除湿,再生空气温度应提高到 80 °C,空气通道长度为 0.2 米最为理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
Automatic building energy model development and debugging using large language models agentic workflow Early-stage identification of indoor leakage sources in factories Physics-consistent input convex neural network-driven reinforcement learning control for multi-zone radiant ceiling heating and cooling systems: An experimental study Optimizing energy efficiency in buildings’ cold water systems: A differential pressure control-based global approach Cement-MgO synergetic stabilized earth-straw mix: From material performance to building simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1