Milan S. Dimitrijević , Magdalena D. Christova , Cristina Yubero , Sylvie Sahal-Bréchot
{"title":"Stark broadening of Sn II spectral lines","authors":"Milan S. Dimitrijević , Magdalena D. Christova , Cristina Yubero , Sylvie Sahal-Bréchot","doi":"10.1016/j.jqsrt.2024.109241","DOIUrl":null,"url":null,"abstract":"<div><div>Our objective is to provide reliable Stark broadening data for Sn II spectral lines needed for astrophysics, plasma physics, fusion research, and different plasmas in laboratory and technology. We used the semiclassical perturbation method for the calculation of Stark broadening parameters, full widths at half intensity maximum and shifts for 44 spectral lines of singly charged tin ion (Sn II), for collisions with electrons and protons. The obtained results have been compared with the existing experimental and theoretical results and used to demonstrate the influence of Stark broadening mechanism on spectral lines of Sn II in stellar atmospheres.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"330 ","pages":"Article 109241"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003480","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our objective is to provide reliable Stark broadening data for Sn II spectral lines needed for astrophysics, plasma physics, fusion research, and different plasmas in laboratory and technology. We used the semiclassical perturbation method for the calculation of Stark broadening parameters, full widths at half intensity maximum and shifts for 44 spectral lines of singly charged tin ion (Sn II), for collisions with electrons and protons. The obtained results have been compared with the existing experimental and theoretical results and used to demonstrate the influence of Stark broadening mechanism on spectral lines of Sn II in stellar atmospheres.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.