Yishou Liu , Yi Zhang , Ziyue Tang , Yingquan Chen , Haiping Yang , Hanping Chen
{"title":"Study on common amino acid pyrolysis products and analysis of pyrolysis products from interaction with aspartic acid","authors":"Yishou Liu , Yi Zhang , Ziyue Tang , Yingquan Chen , Haiping Yang , Hanping Chen","doi":"10.1016/j.jaap.2024.106843","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrogen in nitrogen-rich biomass can be converted into high-value nitrogen-containing chemicals such as pyrroles, pyridines and indoles by pyrolysis. Understanding the nitrogen transport mechanism and reaction pathways is important for the utilization of nitrogen-rich biomass. In this study, the pyrolytic reaction pathways of 16 amino acids and interaction between others with aspartic acid were analyzed by pyrolysis in a closed U-tube reactor followed by gas chromatography/mass spectrometry (GC/MS) measurements. It was found that amino acids with lighter molecular tended to produce more gases during the pyrolysis, while amino acids with heavier molecular tended to produce more liquids and solids. The gaseous products of amino acid pyrolysis mainly consisted of CO<sub>2</sub> and some CO, of which the content of CO<sub>2</sub> reached 86.21 % of glycine and 70.97 % of aspartic acid, respectively. Liquid oils contain a large number of nitrogen-containing heterocyclic compounds, which are mainly produced by four types of reactions: cyclisation, R group removal, polymerization, and fragmentation reforming. And it was found that aspartic acid was able to promote the changes of the three phases of pyrolysis products and the formation of characteristic products.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"184 ","pages":"Article 106843"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004984","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen in nitrogen-rich biomass can be converted into high-value nitrogen-containing chemicals such as pyrroles, pyridines and indoles by pyrolysis. Understanding the nitrogen transport mechanism and reaction pathways is important for the utilization of nitrogen-rich biomass. In this study, the pyrolytic reaction pathways of 16 amino acids and interaction between others with aspartic acid were analyzed by pyrolysis in a closed U-tube reactor followed by gas chromatography/mass spectrometry (GC/MS) measurements. It was found that amino acids with lighter molecular tended to produce more gases during the pyrolysis, while amino acids with heavier molecular tended to produce more liquids and solids. The gaseous products of amino acid pyrolysis mainly consisted of CO2 and some CO, of which the content of CO2 reached 86.21 % of glycine and 70.97 % of aspartic acid, respectively. Liquid oils contain a large number of nitrogen-containing heterocyclic compounds, which are mainly produced by four types of reactions: cyclisation, R group removal, polymerization, and fragmentation reforming. And it was found that aspartic acid was able to promote the changes of the three phases of pyrolysis products and the formation of characteristic products.
富氮生物质中的氮可通过热解转化为吡咯、吡啶和吲哚等高价值含氮化学品。了解氮的迁移机制和反应途径对于富氮生物质的利用非常重要。本研究通过在封闭的 U 型管反应器中进行热解,然后进行气相色谱/质谱(GC/MS)测量,分析了 16 种氨基酸的热解反应途径以及其他氨基酸与天冬氨酸之间的相互作用。结果发现,分子较轻的氨基酸在热解过程中产生的气体较多,而分子较重的氨基酸产生的液体和固体较多。氨基酸热解的气态产物主要是 CO2 和部分 CO,其中 CO2 的含量在甘氨酸和天冬氨酸中分别达到 86.21% 和 70.97%。液态油中含有大量含氮杂环化合物,主要由四种反应生成:环化、R 基脱除、聚合和裂解重整。研究发现,天冬氨酸能够促进热解产物三相的变化和特征产物的形成。
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.